20.201 Mechanisms of Drug Action

Uptake and Distribution

Pharmacokinetics

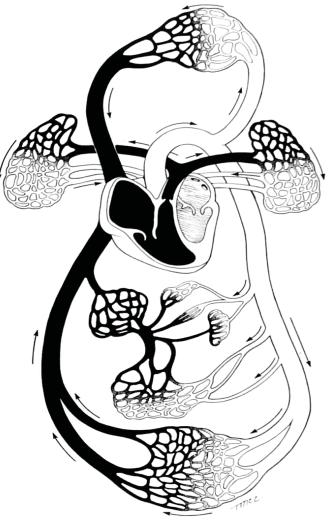
October 9, 2013

Review and Agenda

- Covered significant portions of ADMET
 - \mathbf{A} ~ Uptake = absorption
 - **D** ~ Distribution
 - **M** ~ Metabolism Tannenbaum
 - **E** ~ Elimination
 - T ~ Toxicology Wright, Tannenbaum
- Pharmacokinetics was defined as 1/2 of pharmacology:

Transporters -

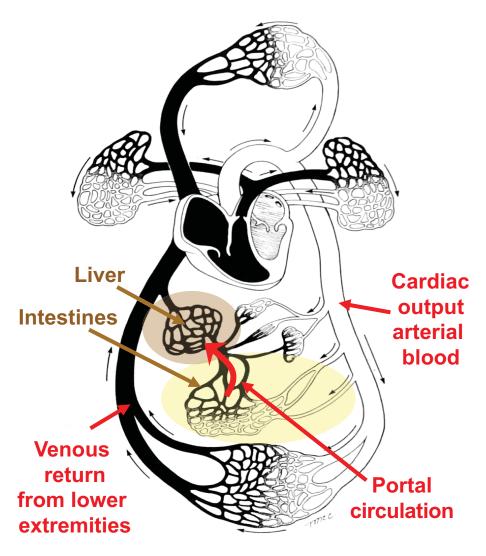
Hoffmaster


- ~ "Pharmacokinetics" getting to the target
- ~ "Pharmacodynamics" action at the target
- Now look at pharmacokinetics in a more practical, quantitative sense

Things to learn today

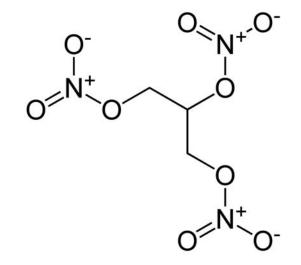
- Volume of distribution
- Portal circulation/Hepatic extraction
- Fluid compartments
- Protein binding concepts and constants
- Drug-drug interactions due to protein binding
- Routes of administration
- Bioavailability/bioequivalence
- Area under the plasma concentration-time curve
- Zero-, first-, second-order kinetics
- Plasma half-life
- Clearance
- Pharmacokinetic models one-, two-, multi-compartment
- Dosing calculations

Drug Distribution


- Once absorbed, a drug molecule is subject to distribution throughout body by the circulatory system
- Major concepts of drug distribution
 - ~ portal circulation
 - ~ plasma protein binding
 - ~ fluid compartments
 - ~ Volume of Distribution (V_d)

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

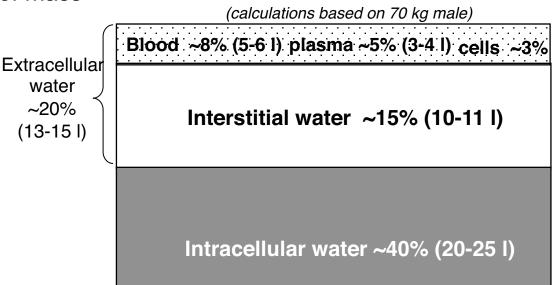
Drug Distribution


- Unique circulatory system for intestines and liver: portal circulation
- Venous outflow from GI tract (lower stomach, small intestine, upper colon) enters portal vein
- Portal vein enters liver and branches as capillaries to deliver blood to hepatocytes
- 80% of blood entering liver from portal vein; 20% from hepatic artery
- Net result: orally administered drugs must pass through the liver before entering circulation

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Drug Distribution

- *Hepatic extraction*: degree to which drug is removed from blood on each pass through the liver
- Example: 63% of *rosuvastatin* is "captured" by liver on each pass
- *First-pass metabolism*: degree to which a drug is metabolized on first pass through liver in portal circulation
- Example: nitroglycerin for angina
- >90% first-pass metabolism demands alternate route for administration
- Sublingual and rectal routes: venous absorption leads to systemic circulation and bypasses liver


 Renal excretion of parent, metabolites

Apparent Volume of Distribution (V_d)

• Hypothetical volume into which the drug is dissolved or distributed

V_d = (total amount of drug)/(plasma concentration) = Dose/C_{p0}

- Limited physical interpretation but useful concept to understand water compartments and gross physicochemical properties of drug
- Affected by: plasma protein binding, binding in tissues, lipid solubility, etc.
- Lipid soluble drugs have a high apparent volume of distribution
- \bullet Concept of V_d reflects fluid compartments
 - ~ Total body water is ~ 60% of mass
 - ~ Three fluid compartments:
 - blood
 - interstitial
 - intracellular
 - ~ Epithelial barriers
- V_d's often reflect real fluid compartments

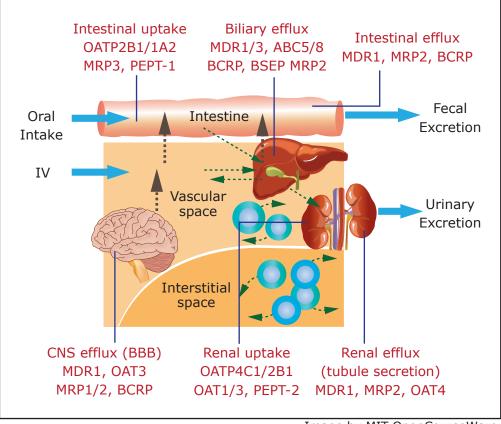
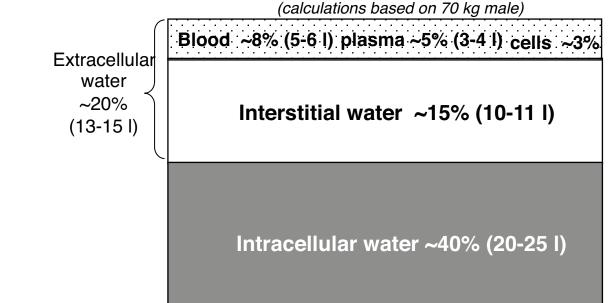
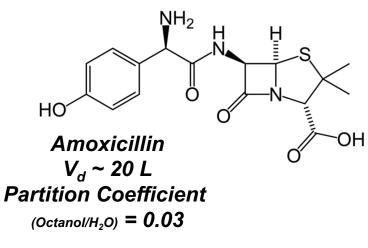
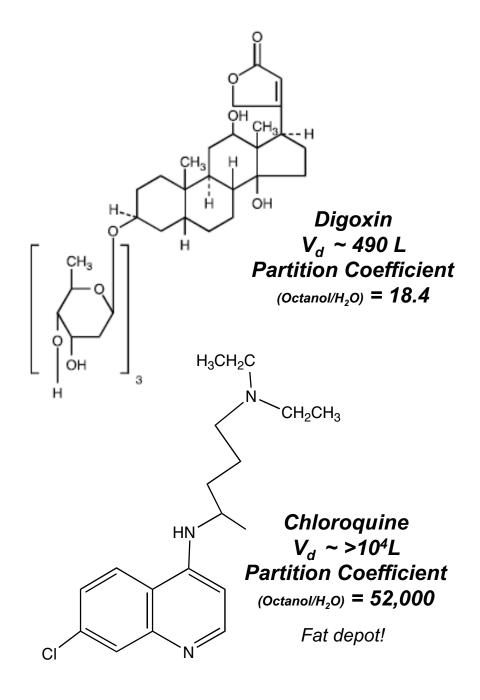




Image by MIT OpenCourseWare.



8

Blood and interstitial fluids

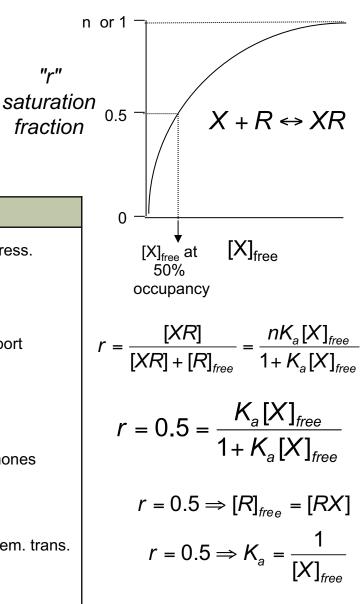
Drug	V (L/Kg)	V (L, 70 Kg)
Sulfisoxazole	0.16	11
Amoxicillin	0.3	20
Phenobarbital	0.55	38
Phenytoin	0.63	44
Diazepam	2.4	168
Digoxin	7	490
Chloroquine	>100	>104

Concepts of distribution: Protein binding

- Binding of drugs to proteins in blood is a major determinant of PKs and a source of toxic drug-drug interaction
- Binding generally depends on charge and water solubility: hydrophobic drugs bind to hydrophobic pockets in serum proteins
- Importance of protein binding:
 - ~ "active" drug = unbound drug = can bind to target
 - ~ binding affects concentration of "active" drug at the site of action

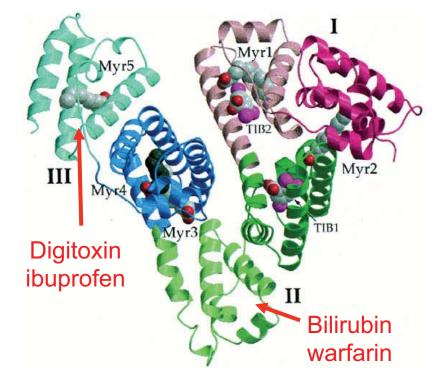
~ wide variation in serum protein concentrations in different diseases

~ drug-drug interactions can involve competition for protein binding

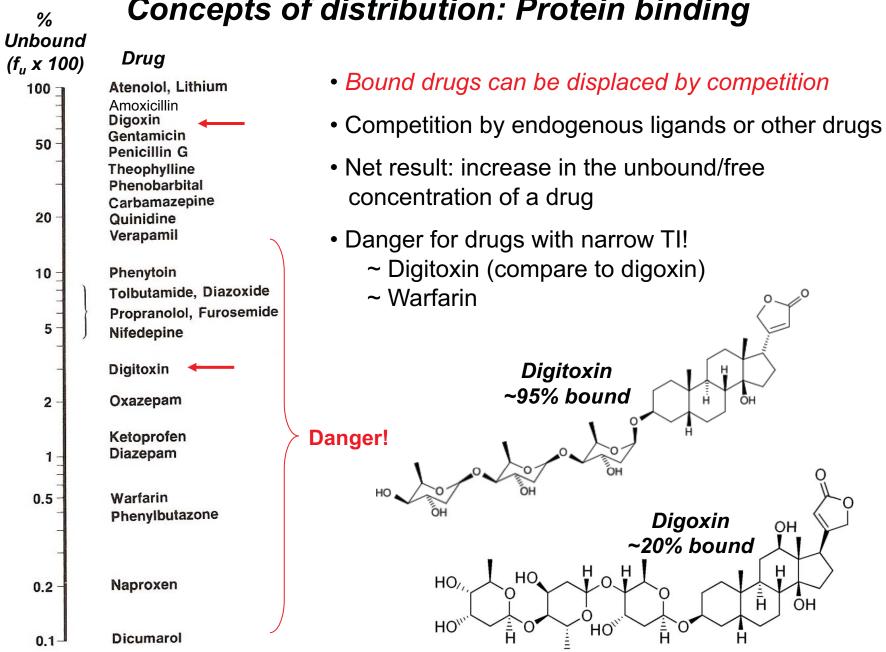

~ "bumping" a drug off of protein increases its unbound concentration

Concepts of distribution: Protein binding

- Focus on two critical serum proteins:
 - ~ albumin
 - ~ α 1-acid glycoprotein
- Fundamental binding isotherm quantifies binding affinity

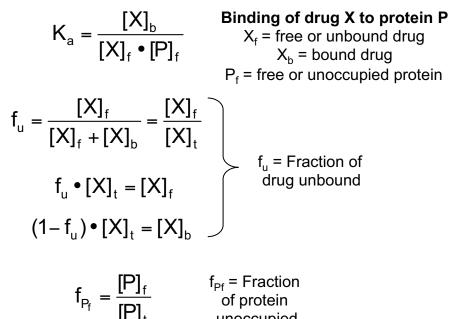

Molecule KDa G/dL **Function** μΜ 66.5 Chemic. trans., oncotic press. Albumin 4.5 670 Globulins 1.5-2 Humoral immunity Immunoglobulins (IgG) 150 130 Lipoprotein Lipid and chemical transport Transferrin 0.2 Iron transport 79 17 0.3 Ceruloplasmin 20 Copper transport 150 Haptoglobin Binds to hemoglobin Steroid-binding globul. 53 0.05 0.8 Transport of steroid hormones Thyroid-binding globul. Transport of thyroxin Macroglobulins α 1-Acid glycoprotein Acute phase reactant, chem. trans. 42 0.4-1 9 Fibrinogen 0.5 Clot formation 400 12 **Complement proteins** Immune function

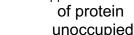
Proteins in serum

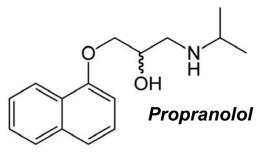

Serum albumin as a drug transport protein

- Most abundant protein in plasma, most important protein for drug
- Member of a protein family
 - ~ α -fetoprotein, vit. D binding protein
 - ~ 3 heart-shaped domains
 - ~ most drugs bind subdomains IIA, IIIA
 - ~ IIA and IIIA have hydrophobic pocket
 - ~ I lacks hydrophobic pocket
- Endogenous ligands: fatty acids, bilirubin, steroids, NO, metals
- Drug binding
 - ~ Most drugs bound less tightly than endogenous chemicals:
 - ~ 1-4 primary/high-affinity binding sites; many weaker/nonspecific binding sites

Chemical	К _а , М ⁻¹	
bilirubin	10 ⁸	
oleate	10 ⁸	
Ca ⁺²	10 ²	
drugs	10 ⁴ -10 ⁶	

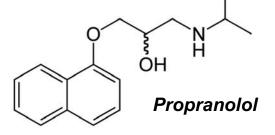

He and Carter (1992) Atomic structure and chemistry of human serum albumin. Nature 358: 209-15




Concepts of distribution: Protein binding

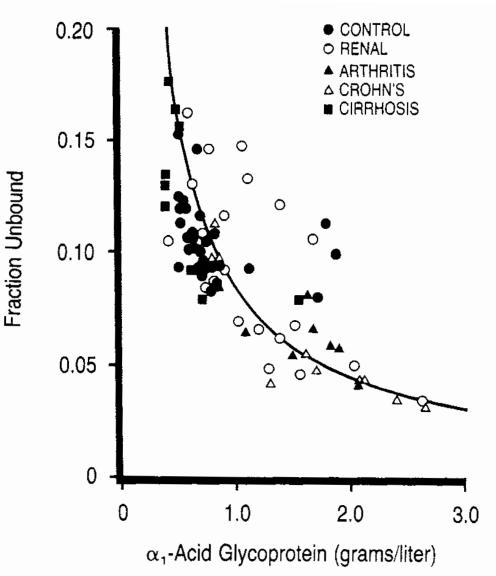
Consequences of altered protein binding in disease

- **Propranolol**: β-adrenergic receptor antagonist used to treat hypertension, tachyarrythmias, migraine
- Bound extensively to α-acid glycoprotein: cationic charge
- What happens to the level of drug binding when the protein level is altered by disease?



Substitute
$$K_a = \frac{(1 - f_u) \cdot [X]_t}{f_u \cdot [X]_t \cdot [P]_f}$$

Solve for f_u $f_u = \frac{1}{1 + K_a \cdot f_{P_f} \cdot [P]_t}$


- Free concentration of drug depends on binding constant, concentration of unoccupied binding sites on protein, and protein concentration
- In general, $f_{pf} \sim 1$: most sites are unoccupied
- Thus, concentration of free drug depends on protein concentration and is relatively constant at different drug concentrations (steep part of binding isotherm)

From: Clinical Pharmacokinetics: Concepts and Applications (1989) ed. Rowland and Tozer, Lea and Febiger, Philadelphila.

Consequences of altered protein binding in disease

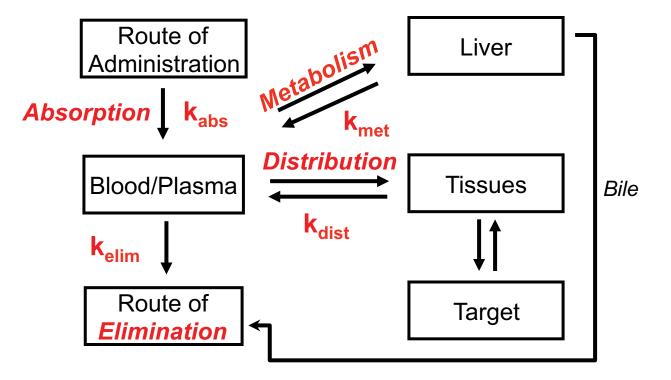
- **Propranolol**: β-adrenergic receptor antagonist used to treat hypertension, tachyarrythmias, migraine
- Bound extensively to α-acid glycoprotein: cationic charge
- The level of α-acid glycoprotein changes as a function of inflammation and disease (acute phase reactant)
- A reduction in the level of the protein leads to an increase in the proportion of unbound drug

© Lea & Febiger. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

BREAK

• Two drugs bind to albumin with the following dissociation constants:

Drug A	Drug B	
K _d ~ 1 pM	K _d ~ 1 μΜ	


• Which drug has a higher affinity for albumin?

• Which drug would be displaced by bilirubin, which has a $K_{\rm d} \sim 10~{\rm nM}$

Pharmacokinetics and the Fate of Drugs in the Body

- **Definition of Pharmacokinetics/Toxicokinetics**: quantitative temporal analysis of the processes of ADME; how much of and how fast the drug reaches its target
- Compare to pharmacodynamics: mechanism by which a chemical or agent exerts its effects (*e.g.*, binding to receptor, interfering with cell wall formation)
- **Applications in pharmacology:** determine how often to administer a drug to maintain therapeutic concentration
- **Applications in toxicology**: define the association between exposure and the progression of disease
- Approaches to pharmacokinetic analysis:
 - ~ Simple compartment models
 - ~ Physiologically-based pharmacokinetic models (PBPK)

Paradigm for Pharmacokinetics Concepts

Routes of administration and absorption

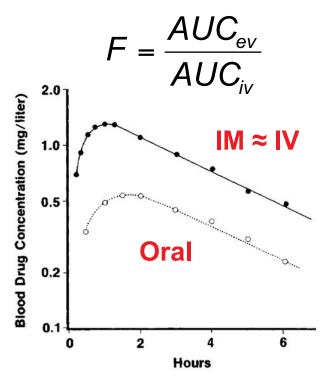
- Already looked at *mechanisms* of absorption
- Now look at quantifying the kinetics of absorption
- Rates of absorption dictated by route of administration:
 - ~ Enteral vs parenteral
 - ~ Vascular vs extravascular

Enteral routes

- ~ Oral portal!
- ~ Sublingual bypass portal
- ~ Rectal bypass portal

Parenteral routes

- ~ Intravenous (iv)
- ~ Intramuscular (im)
- ~ Subcutaneous (sc)
- ~ Topical/transdermal
- ~ Inhalation/nasal
- ~ Ocular


Factors affecting absorption from site of administration

- Quantitative aspects of absorption are important for GI, lung and topical routes
- Transport
 - ~ diffusion not saturable
 - ~ active, facilitated; saturable
- pH effects
 - ~ charge affects transport/diffusion
 - ~ pH stomach ~ 2; tissue pH ~6.5-8
- Physical factors at the site of absorption
 - ~ blood flow
 - ~ surface area
 - lungs 140 m² skin 1.5-2 m²
 - GI tract 300 m² (small intestine)
 - ~ contact time

Quantifying absorption: Bioavailability

- Concept of **AUC**:
 - ~ area under plasma concentration vs time curve
 - ~ measure of the total quantity of drug entering the general circulation
- Bioavailability
 - ~ defined as fraction (**F**) of administered drug entering general circulation
 - ~ calculate as plasma AUC_{oral} /AUC_{IV}
- Determinants of bioavailability
 - Formulation (salt form, particle size, excipients) affects rate of dissolution
 Chemical stability E.g. penicillin unstable at acid pH of stomach
 Hepatic extraction E.g. nitroglycerin has >90% 1st pass metabolism
- Bioequivalence relative bioavailability of two drugs

From: *Clinical Pharmacokinetics: Concepts and Applications* (1989) ed. Rowland and Tozer, Lea and Febiger, Philadelphila.

© Lea & Febiger. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

- 500 mg of a drug administered IM and orally to same subject
- Quantify [drug] in plasma vs time

	Plasi	Urine Data	
Route	AUC (mg•hr/ L)	t _{1/2} decay phase (min)	Cumul. Excret. (mg)
IV	7.6	190	152
IM	7.4	185	147
Oral	3.5	193	70

EXERCISE

Basic Kinetics

- Use elements of chemical kinetics to develop pharmacokinetic concepts
- Basic rate law for a reaction in which molecule A is converted to molecule B:

$$A \rightarrow B \qquad -\frac{dA}{dt} = \frac{dB}{dt} = k \cdot [A]^{n}$$

• Zero-order kinetics: n = 0

$$\sim -dA/dt = k \cdot [A]^{n} \text{ becomes } -dA/dt = k \cdot 1$$

$$\sim \text{ Rearrange and integrate rate equation:} \qquad [A]_{t}$$

$$\int -dA = k \cdot dt$$

$$[A]_{t} = -k \cdot t + C \qquad t = 0 \Rightarrow C = [A]_{0}$$

$$[A]_{t} = -k \cdot t + [A]_{0}$$

Time

- ~ Rate of the reaction is **independent of substrate concentration**
- ~ Rate constant k has units of concentration per unit time
- ~ Concentration versus time **plot is linear**

Basic Kinetics

• First-order kinetics: n = 1

$$\sim -dA/dt = k \cdot [A]^n \text{ becomes } -dA/dt = k \cdot [A]$$

$$\sim \text{ Rearrange and integrate rate equation:}$$

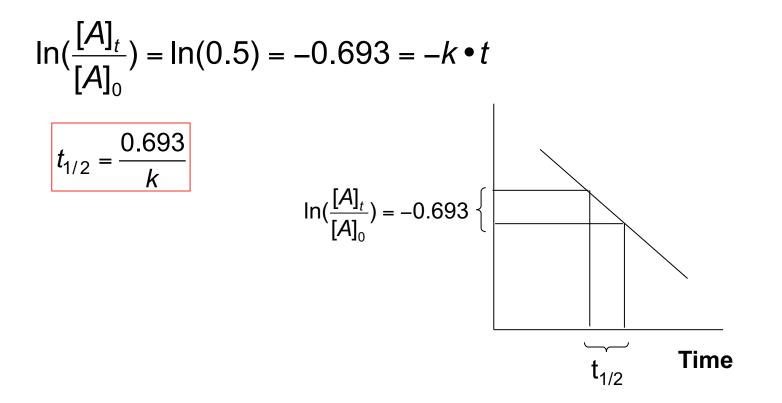
$$\int -\frac{dA}{[A]_t} = k \cdot dt$$

$$\text{Time}$$

$$\ln([A]_t) = -k \cdot t + C \quad t = 0 \Rightarrow C = \ln([A]_0)$$

$$\ln[A]_t$$

$$\ln([A]_t) = -k \cdot t + \ln([A]_0)$$


$$\ln[A]_t = [A]_0 e^{-kt}$$

$$\text{Time}$$

- Rate of the reaction is dependent on substrate concentration
- Rate constant k has units of reciprocal time
- In[A] vs. time plot is linear

Basic Kinetics

- Half-life fundamental pharmacokinetic concept and parameter
- Definition: time to decrease concentration by one-half
- Define mathematically by setting $[A]_t = [A]_0/2$

Basic Kinetics: Processes subject to zero-order kinetics

- "Saturable" processes: ligand molecules completely occupy available binding sites
- Metabolic enzymes
 - ~ Aspirin glycine conjugation and phenolic glucuronidation
 - ~ *Ethanol* alcohol/aldehyde dehydrogenase
 - ~ *Phenytoin* CYP2C9; K_m~ 5 mg/L; therapeutic range 10-20 mg/L
- Transporters: *glucose transporter* in renal tubule (filtered [glucose] > 320 ng/min)
- Mathematical basis for zero-order kinetics
 - ~ Michaelis-Menten rate equation considerations:

$$V = \frac{dP}{dt} = \frac{V_{max} \bullet [S]}{K_m + [S]} \qquad \qquad V = \frac{dP}{dt} = \frac{V_{max} \bullet [S]}{K_m + [S]} \sim \frac{V_{max} \bullet [S]}{[S]} = V_{max}$$

~ When [S] >> K_m , all substrate binding sites occupied and enzyme operates at V_{max}

Basic Kinetics: Processes subject to first-order kinetics

- Definition of a first-order process: a reaction or activity, the rate of which depends on the concentration of reactants or the chemical of interest
- Most processes of absorption, distribution, metabolism, elimination are first-order
- **Diffusion**: Rate of diffusion depends on the concentration gradient (*i.e.*, the concentration of the "reactant")

$$-\frac{\mathrm{d}Q}{\mathrm{d}t} = P \bullet A \bullet \Delta C$$

• *Metabolism and transport proteins*: Enzyme kinetics generally first-order, except under conditions of substrate saturation:

$$\frac{d[Product]}{dt} = V = \frac{V_{max} \bullet [S]}{K_{m} + [S]}$$

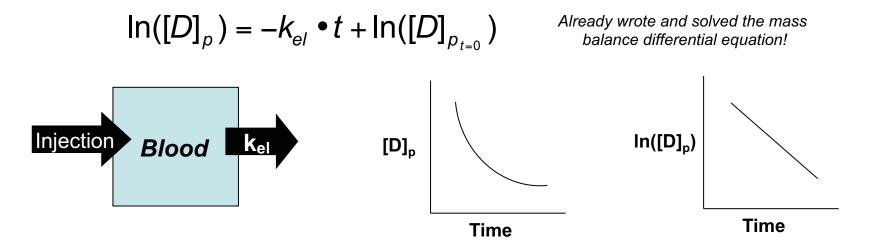
when
$$K_m >> [S]$$
, then $\frac{d[Product]}{dt} = V = \frac{V_{max}}{K_m} \cdot [S] = k_{met} \cdot [S]$

Concept of clearance

• **Clearance (CI)**: rate of removal of a chemical from any compartment (blood, tissue, entire body) by any process (metabolism, excretion, distribution to another tissue, etc.)

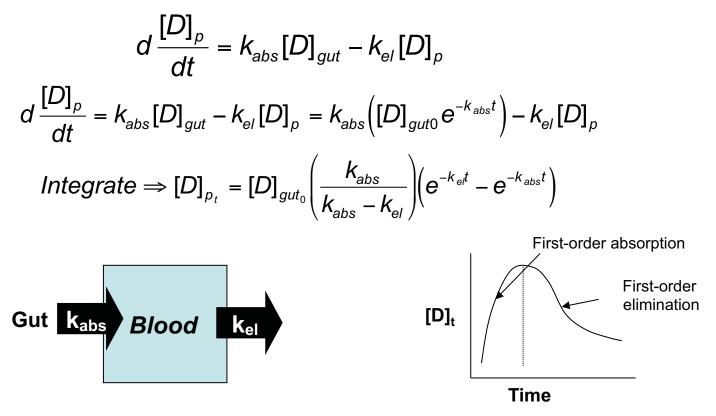
- Whole body or systemic CI is sum of other CI's: CI_s = CI_{hepatic}+ CI_{renal}+ CI_{other}
- Physical interpretation: volume of blood/tissue "cleared" of chemical per min Example: Cl = 100 ml/min ⇒ chemical removed from 100 ml of blood/min
- Mathematical definitions:

$$CL = k_{el} \cdot V_d$$
 where k_{el} is the first-order rate constant for elimination
of a chemical from the blood or tissue; V_d is the
apparent volume of distribution of the chemical


$$CL = \frac{Dose}{AUC_0^{\infty}}$$
 where AUC over the time period t = 0 to t = ∞

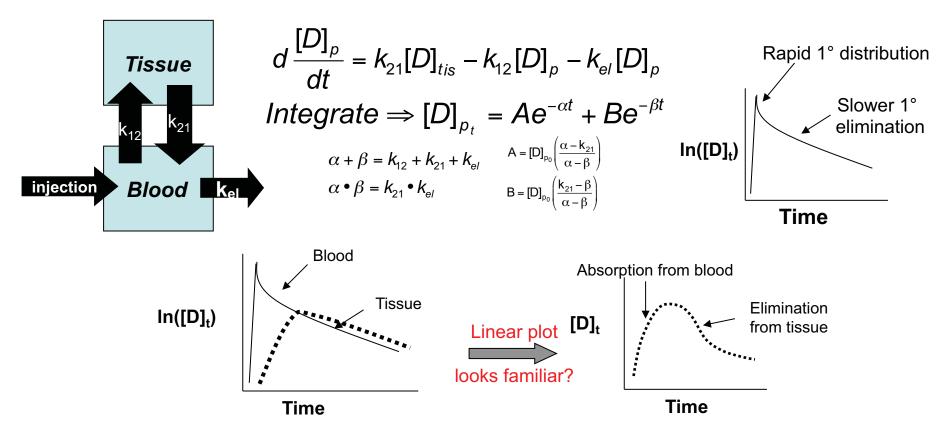
$$CL_{organ} = Q\left(\frac{C_A - C_V}{C_A}\right) = Q \bullet E$$

where Q is blood flow to the organ, C_A is the arterial blood concentration, C_V is the venous blood conc. and E is the extraction ratio


• Intrinsic clearance (Cl_{int}): the contribution of metabolism to the overall clearance associated with an organ; CL_{int} is independent of blood flow

- Build an understanding of PK'S with simple models
- More complicated physiologically-based models combine many simple models
- Single compartment with I.V. injection and first-order elimination
 - ~ Consider the body as a "box" with blood as the **sampling compartment**
 - ~ Rapid injection and presumed rapid ("instantaneous") distribution
 - ~ Obtain blood sample and quantify drug as a function of time
 - ~ First-order linear plot of ln(plasma concentration) vs time
 - ~ The rate constant, k, is now the elimination rate constant, k_{el}
 - ~ Plasma half-life = $0.693/k_{el}$
- Loss of drug from plasma due to metabolism, excretion, distribution to tissue...

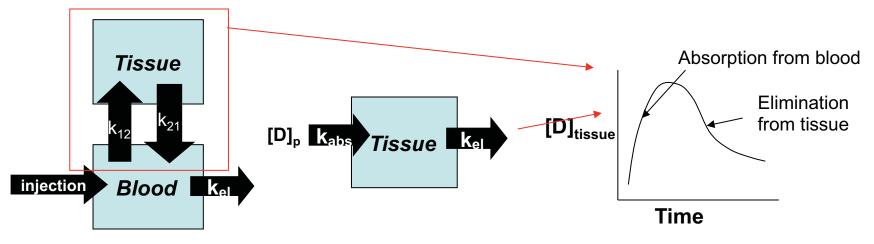
• Single compartment with absorption from gut and first-order elimination


- ~ Factor in kinetics of absorption with kinetics of elimination from blood
- ~ Distribution is no longer instantaneous
- ~ Assume first-order absorption from gut (why?)
- ~ Write rate equation that accounts for 1° absorption and 1° elimination

~ As drug absorbed from gut, $e^{-k_{abs}t}$ goes to zero and $[D]_{p}$ dominated by k_{el}

• Two compartments with I.V. injection and first-order elimination

- ~ Rate equation now has 3 terms
- ~ Injected drug distributes in blood compartment "instantaneously"
- ~ Observe two "phases"
- ~ Rapid movement of drug out of blood into tissue compartment
- ~ Slower phase: as plasma concentration falls below tissue concentration, drug moves into blood


Correlate single- and multi-compartment models

~ Graph of $[D]_t vs$. time for the tissue compartment of a 2-compartment model is identical to graph of 1 compartment model with 1° absorption and 1° elimination

 \sim k_{abs} = k₁₂ and k_{el} = k₂₁

~ Easy: string together single compartment models for each entry and exit component, solve ordinary differential equations (Physiologicallybased PK models; PBPK)

~ Don't hassle with the complexity of \geq 2 compartment models

Pharmacokinetics of Multiple Doses

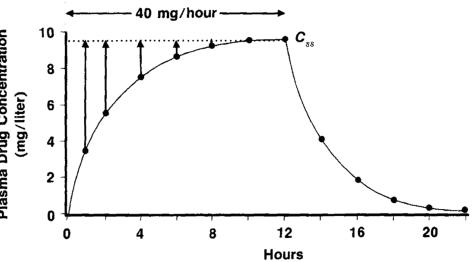
- Need to determine how frequently to give a drug so that we maintain blood concentration in the therapeutic range and below the toxic range
- Define the concept of steady-state concentration of drug in blood (C_{ss}):
 - ~ balance of rates: dosing, absorption, elimination
 - ~ reach a state in which drug concentration fluctuates within a narrow window
- Achieve C_{ss} after ~4 half-lives
- First example with constant infusion:

$$C_{t} = \left(\frac{k_{inf}}{Cl}\right) \left(1 - e^{-k_{el} \cdot t}\right)$$

$$C_{ss} = \frac{C_{t}}{\left[1 - (0.5)^{\left(t/t_{1/2}\right)}\right]} = \frac{k_{inf}}{k_{el} \cdot V_{d}}$$

$$k_{inf} = \text{rate of infusion}$$

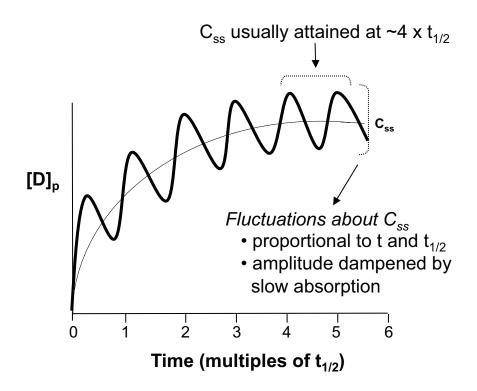
$$k_{el} = \text{elimination rate constant}$$

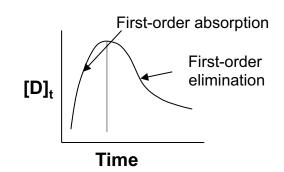

$$C_{ss} = \text{steady-state concentration (mg/mL)}$$

$$C_{t} = \text{concentration at time} = t$$

$$t = \text{time}$$

$$t_{1/2} = \text{half-life}$$


$$(0, 1) = 0$$



Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Pharmacokinetics of Multiple Doses

- Consider the case of multiple daily doses
- Now see saw-tooth drug concentration profile due to peak and trough fluctuation
- Simply string together 1° abs/1° elim graphs
- Achieve C_{ss} after ~4 half-lives: quantify average
 [D]_p at t > 4 x t_{1/2}

$$C_{ss} = \frac{F \bullet dose}{CL \bullet T} = \frac{F \bullet dose}{k_{el} \bullet V_{d} \bullet T}$$

C_{ss} = steady-state concentration (mg/mL) F = fractional bioavailability CL = blood clearance (mL/min) T = dosage interval (min) Dose in mg

Pharmacokinetics Web Sites

• Excellent web site for pharmacokinetics: http://www.boomer.org/c/p1/index.html

• JAVA calculator for plotting blood concentrations approaching steady-state:

http://www.boomer.org/c/p1/Ch15/Fig57/Fig57.html

MIT OpenCourseWare http://ocw.mit.edu

20.201 Mechanisms of Drug Actions Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.