Instructor: Professor Sebastian Seung

9.641 Neural Networks Problem Set 1

(Due Feb. 10, Thursday before class)

The **integrate-and-fire neuron** is a simple model of spiking behavior that sacrifices biophysical realism for mathematical simplicity.

1. Single neuron model

First, let's consider an isolated neuron into which we inject a current I_{app} . Below threshold, the membrane potential V obeys the differential equation

$$C\frac{dV}{dt} = -g_L(V - V_L) + I_{app} \tag{1}$$

If V reaches a threshold V_{θ} , then the neuron is said to spike, and V is instantaneously reset to a value of V_0 , where $V_0 < V_{\theta}$.

- (a) Analytically determine the threshold current I_{θ} (or rheobase) below which the neuron is inactive, and above which the neuron fires repetitively. The sign of I_{θ} should depend on whether V_{θ} is above or below V_{L} .
- (b) Experimentally determine I_{θ} and compare it to the value you found analytically. In MATLAB, a system $\frac{dy}{dt} = f(y)$ can be simulated by choosing the initial conditions y(1) and then repeatedly performing the Euler integration step $y(t+1) = y(t) + dt \frac{dy}{dt}(t)$.

Use the following values for your simulations: $V_L = -74mV$, $g_L = 25nS$, $V_{\theta} = -54mV$, $V_0 = -60mV$, C = 500pF. Plot a trace of the membrane potential V, one for I right below and one for I right above I_{θ} .

- (c) If I_{app} is held constant in time above threshold, the neuron fires action potentials repetitively, as you should have observed in your simulations. Find the relationship between the frequency of firing f and I_{app} .
- (d) Show that f behaves roughly linearly for large I_{app} and can be approximated by

$$f \approx \frac{\left[I_{app} - g_L(V_{1/2} - V_L)\right]^+}{C(V_{\theta} - V_0)}$$
 (2)

with $V_{1/2}=(V_{\theta}+V_0)/2$. Explain in words the reason for this linearity. [Hint: Use the Taylor series expansion $[log(1+z)]^{-1}\approx 1/z+1/2$.] Plot your results from (c) and (d) together and compare them.

2. Modeling synapses

A synapse is modeled by a variable conductance g in the postsynaptic neuron. A spike in the presynaptic neuron causes an increase of the conductance according

to $g:=g+\frac{\alpha}{\tau}$. Between spikes, g decays exponentially: $\frac{dg}{dt}=-\frac{g}{\tau}$. So a synapse is a leaky integrator, counting spikes but forgetting them over time periods longer than τ . The area under the exponential caused by a single spike is given by the parameter α .

Under certain conditions this can be approximated by $\tau \frac{dx}{dt} + x \approx f$, where x is proportional to g and f is the frequency of incoming spikes.

Simulate the time course of the conductance of a synapse for $f=25 \mathrm{Hz}$ for different τ . For what values of τ is this approximation valid? Illustrate your answer with two plots.

3. From synapses to current

In practice, neurons are a part of networks and receive input currents through synapses instead of an electrode. For a neuron i receiving inputs from neurons j, this can be written as:

$$C_{i}\frac{dV_{i}}{dt} = -g_{Li}(V_{i} - V_{L}) - \sum_{j} g_{ij}(V_{i} - V_{ij})$$
(3)

Show that equation (3) can be simplified to the form of equation (1), describing a neuron with leak conductance g_L receiving an external current I_{app} if the synaptic conductances g_{ij} are changing slowly (meaning they are constant for a small interval dt). Determine I_{app} and g_L analytically in terms of g_{ij} , V_{ij} , V_L and g_{Li} .

4. From spikes to rates

We are now ready to derive a nonspiking model of a neuron. To do that, we will assume that all neurons have the same membrane capacitance C, the same time constant τ and that conductances are changing slowly (meaning they are constant for a small interval dt).

Using the results of 1, 2 and 3, show that equation (1) can be approximated by

$$\tau \frac{dx_i}{dt} + x_i \approx f\left(b_i + \sum_j W_{ij} x_j\right) \tag{4}$$

Starting with the approximation in (2), plug in the approximated f-I relationship from 1(d). Then, substitute I_{app} and g_L with the expressions you found in (3). Assuming all time constants are the same, all synapses emanating from a single neuron have the same temporal behavior, because they are driven by the same spike train, and decay at the same rate. This yields $x_j = \frac{g_{ij}}{\alpha_{ij}}$. Finally, identify b_i and W_{ij} in terms of α_{ij} , g_{Li} , V_L , $V_{1/2}$ and V_{ij} .