
MIT Department of Brain and Cognitive Sciences 
9.641J, Spring 2005 - Introduction to Neural Networks 
Instructor: Professor Sebastian Seung 

9.641 Neural Networks

Problem Set 10


(Due before class on Thursday, May 5th) 

1. Backpropagation Algorithm 

In this problem, we will re-investigate the two pattern matching problems 
from the previous homework, i.e. face categorization and digit recognition. 

The sample code for the last problem set (perceptron delta.m) pulled tmax 

images at random from the training set, and applied an online update after 
each image. For this problem set, we will measure the error as a function 
of epoch number, where an epoch is defined as a single pass through the 
entire data set (each image is evaluated once). 

Write your code so that in each epoch you cycle through every image in 
the training set (making an online update after each) and through every 
image in the test set (no updates, just record the error). 

We will look at two different error metrics for this problem: the epoch 
squared error and the epoch classification error. The squared error for an 
epoch is simply the sum of the squared errors for each image in the data 
set. This is precisely the function that is minimized in the gradient descent 
calculation. We can also think of the network as solving a classification 
problem. For each input, the image is classified according to the output 
neuron that is maximally active. The classification error is the percentage 
of images which the network classifies correctly. 

(a) For the multi-layer perceptron, experiment with different sizes n of 
the hidden layer, initial conditions for the weights and biases, and 
learning rate. Settle on particular choices of these parameters, and 
run the backprop algorithm until convergence. As your final results, 
submit the following (for both datasets): 

i. MATLAB codes 

ii. first layer of synaptic weights of converged network, shown as 
images 

iii. “confusion matrix” of converged network (Cij is defined as the 
number of times class j is classified as class i). The confusion 
matrix should be 2×2 for the faces (binary classification problem) 
and 10 × 10 for the digits. 

iv. learning curves of training squared error, test squared error, 
training classification error, and test classification error as func
tion of epoch number. 

1 



For your best parameters how does the squared error evolve over time 
for the training set? What about bad parameters? What about the 
test set? How do the two curves compare? 

What about the classification error? Is the squared error a good 
predictor of the classification error? 

(b) Run a single-layer perceptron (modify the perceptron delta.m code 
from last time) on the two datasets and submit the items (i) through 
(iiii). How does the multi-layer perceptron compares with the single 
layer? 

2. Limit Cycle Learning. 

The classical test problem for trajectory learning in neural networks is the 
circle problem. For this problem we will use a circular desired trajectory 
d(t) with a center at [0.5, 0.5] and radius 0.25, and neurons of the form: 

ẋ + x = f(Wx + b), 

where f = 1 
1+e−x . The desired trajectory should make at least two full 

rotations around the origin. 

• Consider the Euler discretization of ẋ + x = f(Wx + b), 

x(t) − x(t − 1) 
+ x(t − 1) = f(Wx(t − 1) + b) (1) 

dt 

starting at the initial condition x(0) and continuing until x(T ). Show 
that 

ΔW = η 

T � 

=1 t

s(t)x(t − 1)T (2) 

is a gradient update, where s is defined by the final condition s(T + 
1) = 0 and running the dynamics 

s(t) − s(t + 1) ∂R 
+ s(t + 1) = D(t)WT s(t + 1) + D(t) (3) 

dt ∂x(t) 

′backwards in time until t = 1. The matrix D(t) = diag{f (Wx(t − 
1) + b)} is diagonal. The continuous time limit of this equation is 

∂R 
−ṡ + s = D(t)WT s + D(t) (4) 

∂x(t) 

We will do that in 2 steps: 

∂R (a) To derive ΔW and Δb we first need to compute 
∂Wij 

and ∂R .
∂bj 

This is difficult because R is an implicit function of Wij and b. 

2 



The good news is that you do not need to compute both, because 
the sensitivity lemma tells you than 

∂R ∂R 

∂Wij 

=
� 

t 
∂bi(t) 

xj(t − 1) 

∂R So we just have to compute 
∂bi(t) 

. The second good news is that 

there exists a simple coordinate transform that exists between 
∂R ∂R and 

∂xj (t) 
, which is very easy to compute (R is an explicit 

∂bi 

function of xj(t)). This change of coordinates can be found by 
applying the chain rule: 

∂R 

∂xj(t) 
=

� 

it1 

∂R ∂bi(t1) 

∂bi(t1) ∂xj(t) 

∂R Denote si(t) = 
∂bi(t) 

and compute ∂R as a function of D−1(t), 
∂xj (t) 

Wij , and δtt1 where δtt1 is the kronecker function i.e. δtt1 = 1 if 
t = t1 and 0 else. 

(b) From there derive Eq. 3 and ΔW . 

•	 Train a fully-connected recurrent network with 2 visible and 3 hidden 
units (this means that the network contrains 5 units total) using the 
backpropagation-through-time algorithm. 

Hint: Verify that your W is 5 × 5. Your program should contain 
an outer loop (2000 epochs) and 2 inner loops: One for the forward 
pass where you compute and store the x(t) and the D(t) for all T 

time steps. You should have a second inner loop for the backward 
pass where you compute the y(t) also for all T time steps. D(t), 
y(t) and x(t) should all be 5 × T . After the forward and backward 
pass, you have all you need to update W and b. If your training 
is getting stuck in a local minima, try training on a small fraction 
of the trajectory first. Submit your MATLAB code, training error 
plots, and a state-space plot of the actual trajectory superimposed on 
the desired trajectory. Describe in words the function of the hidden 
units in the trained networks. 

3 


