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MIT Department of Brain and Cognitive Sciences 
9.641J, Spring 2005 - Introduction to Neural Networks 
Instructor: Professor Sebastian Seung 

Problem Set 7 (due Thursday, Apr. 14) 
Models of Associative Memory 

April 8, 2005 

1. Rivalry model. 

This neural circuit has two neurons x1 and x2 interacting via mutual inhibition, and adaptation variables z1 and 
z2. 

ẋ1 + x1 = [b1 − βx2 − γz1]
+ (1) 

ẋ2 + x2 = [b2 − βx1 − γz2]
+ (2) 

τ ż1 + z1 = x1 (3) 

τ ż2 + z2 = x2 (4) 

Consider the case of very large τ , and β > 1. Suppose that b1 > b2 > 0, and the circuit is initialized with all 
variables equal to zero. Initially x1 will win, and x2 will be suppressed. Prove that this is the steady state for 

b1 1 + γ 
> 

b2 β 

Prove that if b1/b2 is less than this value, the circuit will switch back and forth. 

Show numerical simulations supporting the statements above. 

2. Lyapunov analysis. 

(a) In class we presented the function 
1 

E = − Wijsisj
2 

ij 

as a Lyapuov function (we use E here for “energy function”, which is a synonym for Lyapunov function) 
for the Hopfield model using a sequential update: 

si = sign( Wijsj) 
j 

1 ξµξµ i =6 j
Wij = N µ i j 

0 i = j 

where s ∈ {−1, 1}N . Prove this by showing: 

i. E is lower bounded. 
ii. ΔE ≤ 0, where ΔE is the change in energy after performing a sequential update. 

(b) Generalize the Lyapunov function to work for units with a bias term: 

si = sign( Wijsj + bi). 
j 

Prove your result as necessary. 
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(c) Find a Lyapunov function for a network which uses units xi ∈ {0, 1} instead of si ∈ {−1, 1}: 

xi = H( Wijxj − θi), 
j 

where H is the Heaviside function: H(u) = 1 if u > 0, otherwise H(u) = 0. Prove your result as 
necessary. 

3.	 Capacity simulations. 

One definition of the capacity of the Hopfield model is the number of patterns that can be stored where some 
small fraction (Perr ≤ 0.01) of the bits are corrupted. Using this definition, the capacity of the original Hopfield 
model is approximately 0.14N for large N , where N is the number of units in the network. In this problem, 
we will validate this capacity using a simple MATLAB simulation, and then use our simulation to compare the 
capacities of original Hopfield model with the capacities an network storing sparse patterns using {0, 1} units. 

(a) The original Hopfield model. 
Construct P random {−1, 1} patterns, ξ1 , ..., ξP , each of size N . Find W using the prescription given in 
problem 2a. 

As described in class, we investigate the capacity by checking if each of the stored patterns are actually 
steady states of the system. In class we showed the weight update from a stored pattern ξν can be written 
as: 

1 
si = sign(ξi

ν + 
N

ξi
µξj

µξj
ν). 

=ν j 6µ6 =i 

We would like si to equal ξi
ν , but our steady state could be corrupted by the zero-mean crosstalk term. To 

visualize this in MATLAB, collect the terms j Wijξj
u for all i and all µ and make a histogram of the 

results. To get a nice plot, use N = 1000 and 50 bins instead of MATLAB’s default of 10. 

Submit your matlab code and plots for P = 100, 200, and 140 (the known capacity for N → ∞). Describe 
in words how the shape of the histogram changes as we change P , and how this impacts the capacity. 

(b) Storing sparse patterns. 
The notion of sparsity doesn’t make sense for the {−1, 1} network, so we will use {0, 1} units for this 
part. The patterns that we wish to store are random with each bit having probability f of being a 1. We are 
interested in the case where f is small. 
Consider the network using units xi ∈ {0, 1} and the covariance rule: 

1 

Wij = Nf(1−f) µ(ξi
µ − f)(ξj

µ − f) i 6= j 

0	 i = j 

with the discrete dynamics: 
xi = H( Wijxj − θi). 

j 

i.	 Show that for large N and small f the sum j Wijξj
ν can be seperated into ξν and a crosstalk term. i 

ii.	 Show that this crosstalk term has zero mean. 
iii. Construct P random {0, 1} patterns, each of size N , using f as the probability of a 1 bit. Plot the 

histogram of j Wijξj
µ as in part a. Experiment with P to estimate the capacity for N = 1000 and 

f = 0.05. 
iv.	 According to your simulations, what value of the threshold θi maximizes the capacity? 

Nv.	 One published result estimates the capacity of the sparse network as P = 2f | log(f)| . How well does 
this quantity compare to your results (test this by varying N and f )? 

(c) How does the capacity of the sparse network compare to the original model? 
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