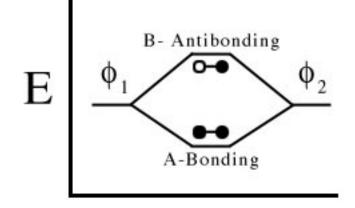
10.675 LECTURE 14

RICK RAJTER

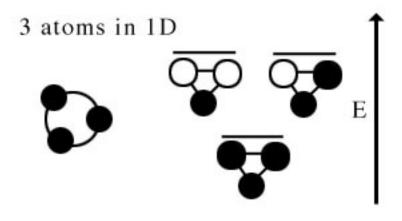

1. Today

Introduction to Plane Wave Pseudo Potential Methods

- \rightarrow Electronic Structure of Extended Systems
- \rightarrow Bloch's There om
- \rightarrow Plane Wave Basis Set
- \rightarrow Implementation of DFT Pseudo potentials

2. MOT

Molecular Orbital Theory \rightarrow 1D configuration of H-atoms Atoms 1 and 2 Φ_1 wave function centered around atom 1 Φ_2 wave function centered around atom 2 Bonding $\Phi_A = \Phi_1 + \Phi_2$ Anti-Bonding $\Phi_B = \Phi_1 - \Phi_2$



The bonding state is energetically favorable in the band splitting that occurs. Move on to 3 atoms in a ring (1D line) 3 energy configurations (2 unique) Lowest, $\Phi_1 + \Phi_2 + \Phi_3$ Highest $\Phi_1 + \Phi_2 - \Phi_3$ AND $\Phi_1 - \Phi_2 - \Phi_3$

Date: Fall 2004.

RICK RAJTER

Every reverse of sign from neighboring atoms (1 links to 2, 2 links to 3, 3 links back to 1) is a node. Nodes are higher in energy from the band splitting.

N atoms, 1 huge ring.

Lowest energy is all wave functions of the same sign Highest energy is an alternating arrangement of wave functions. Each energy in between (combinations of + and -'s) creates a continuum of levels between the highest and lowest energy. with $10^{20} \rightarrow$ is a virtual continuum of levels.

3. NOTATION

The wave functions Φ_k 's are spaced "a" distance apart. $\Phi_k = \sum_n e^{ikna}\phi_n$ which is the generalized phase relationship $k \rightarrow$ is the index or "momentum" vector. This results from the translational symmetry of the system. Unique values of $|k| < +/ - \frac{\pi}{a}$ are in the first "brillioun zone". E(k) - E(-k) from 0 to π/a and DOS (# of states between E and E + dE)

4. Physics approach.

Bloch's Thereom. Given the Hamiltonian H = R + V(r) where V(r)=V(r+R)=V(r) for all R in a periodic lattice. $\Psi_{nk}(r) = e^{ikr}u_{nk}(r)$ where $u_{nk}(r) = u_{nk}(r+R)$ k is the quantum # that characterized the translational symmetry of the system Periodic lattice. $1cm^3 \ 10^{22}$ atoms 10^{17} on the surface. $10^{-5} - 10^{-6}$ surface/volume ratio.

5. RECIPROCAL LATTICE

k space

The set of all wave vectors g that yield plane waves w/the periodicity of a given lattice is it's reciprocal lattice. $e^{ig(r+R)} = e^{igr} \Rightarrow e^{igR} = 1$ Reciprocal lattice holds this equations Expand $h_{nk}(r)$ in a "basis set" of plane waves w/periodicity of lattice $e_{nk}(r) = \sum_{q} c_n(q)e^{igr} \Rightarrow \Psi_{nk}(r) = e^{ikr} \sum_{q} c_n^k(q)e^{igr}$

10.675 LECTURE 14

Where do we stop? Choose an energy criteria and set of k's $E_k = \frac{1}{2}(k+g)^2 < E_{cut}$

6. Advantages of method

Syntax easier, no *'s, +'s etc etc Can methodically increase accuracy of your basis set BSSE is not an issue

7. DISADVANTAGES

Must treat empty space

Many plane waves needed (costly)

Amorphous systems need to be large enough such that there is no periodic interaction.

8. Misc

For insulators and semiconductors, on the k point is used. The "gamma" point. Another problem \Rightarrow plane waves don't describe huge variations in $\rho(r)$ well Solution \rightarrow introduce pseudo potentials $\rho_o(r) = \sum_k w_k \sum_n |\Psi_{nk}(r)|^2$ where w is the weighting function In metals, small #'s of k's are chose on a mesh that physicists have developed.

In metals, small #'s of k's are chose on a mesh that physicists have devel Metals \rightarrow k points used.

9. Pseudopotentials

 \Rightarrow treat only valence electrons explicitly

 \Rightarrow can describe variations in ρ