
Design Lab 4 6.01 – Fall 2011

Hitting the Wall 

Goals: In Design Lab 2, you developed a “distance-keeping” brain to position a 
robot a fixed distance in front of a wall, even when the wall moved. In this 
lab, we develop a signals and systems model of that system, and use the 
model to understand the performance of the brain/robot system. With this 
model, we will be able to answer key performance questions, such as: was 
the response fast or slow? Did the system overshoot or oscillate? 
This will be studied in three steps: 
• Develop a difference equation model of the wall finder system 
• Build a state machine model of the feedback system 
• Implement a robot brain realizing the state machine controller 

1 Introduction 

Resources: This lab should be done with a partner. Each partnership should have 
a lab laptop or a personal laptop that reliably runs soar. 

• designLab04Work.py: Template with appropriate imports for making 

state machines and plotting their outputs. 
• smBrainPlotDistSkeleton.py: Template simple brain with a place 

for you to write the state machine for the controller. 
• Chapter 5 of the course notes. 

Be sure to mail all of your code and plots to your partner. You will both need to bring it 
with you to your first interview. 

Consider a brain/robot system which senses the distance the robot is away from a wall, and ac
tuates the robot motors to move the robot to keep it a certain distance from the wall. This is an 
example of a simple control system with a single input (the desired distance to the wall) and a 
single output (the actual distance to the wall). We can think of the control system as having three 
subsystems: the “controller,” the “plant,” and the “sensor.” 

Think of the input as being set by a user (e.g. you) or by some planning system that the robot uses 
to navigate in the world (e.g. a state machine that moves the robot from one target point to the 
next in some sequence). Thus, the input might stay constant for some period of time, and then 
change to a new value for some period of time, and so on. 

Some of the software and design labs contain the command athrun 6.01 getFiles. Please disregard this instruction;
the same files are available on the 6.01 OCW Scholar site as a .zip file, labeled Code for [Design or Software Lab number].



1



controller plant

sensor

+X Y
error command

−

di[n]
do[n]

Design Lab 4 6.01 Fall 2011


Figure 1 Structure of Control System. For today’s lab, the controller is the robot’s brain, the plant 
is the part of the system that is being controlled (i.e., the robot’s locomotion system, whose input 
is an io.Action and whose output is the robot’s position), and the sensor is the robot’s sonars. 

Generally, we design the controller to command the plant so that its (the plant’s) output Y tracks 
some desired value X. For example, in the case of asking a robot to stay a particular distance from 
a wall, we want the output Y to be as close as possible to the input X. Since the plant is typically 
a physical system, the output of the plant (e.g., the position of the robot) is not easily compared 
directly with X. Rather, the physical output is measured by the sensor, whose output (which is 
typically electronic) can be subtracted from X to determine the error. Ideally, the output of the 
sensor is proportional to the output of the plant. More generally, however, the sensor introduces 
its own distortions, delays, and noise. 

Wk.4.2.1 Do tutor problem Wk.4.2.1 if you have not already done so. 

 Difference equations for wall finder 

Objective: Develop a difference equation model for the wall finder system. 

Detailed guidance: 

Make a simple model of the brain/robot system, as follows. Let do[n] (the ’o’ stands for output) 
represent the current distance from the robot to the wall, and let di[n] (the ’i’ stands for input) 
represent the (current) desired distance to the wall. Also let v represent the forward velocity of 
the robot. Let T = 0.1 seconds represent the time between steps. 

2

When the robot receives a new command, we assume that the robot immediately changes its 
velocity and then holds the new velocity constant until it recieves the next command (i.e., the 
robot accelerates so fast that we can ignore the acceleration time). 

Check Yourself 1. Given the following conditions, what is the distance to the wall on step 1? 

v[0] = 1 do[0] = 3 

v[1] = 2 do[1] = 

2




controller plant

sensor

+
−

Design Lab 4 6.01 Fall 2011


Wk.4.3.1 Enter your answer into part 1 of Wk.4.3.1 and check it. 

Assume the system has the structure shown in Figure 1. Assume that the sensor measures the 
current distance do[n] and generates the sensed distance ds[n], which is equal to the current dis
tance delayed by one step time. Let e[n] represent the error signal, which is the difference between 
the input distance di[n] and the sensed distance ds[n]. On each step, the controller commands a 
forward velocity v[n] in proportion to the error so that v[n] = ke[n]. Choose k so that the velocity 
is 5 m/s when the desired location is 1 m in front of the robot (think about the previous figure 
showing the position of the robot in order to help frame this calculation for k). 

Check Yourself 2. Fully label the following system diagram. Include do, di, ds, v, e. 

Determine difference equations (using constants T and k) to relate the input and output signals of 
the following system components. 

• the controller 

• the model of the plant 

Wk.4.3.1 Enter these equations into parts 2, 3, and 4 of tutor problem Wk.4.3.1. 

• the model of the sensor 

Combine these equations to derive a difference equation that relates do to di, by: 
1. Converting the difference equations to operator equations in R, 
2. Solving for Do in terms of Di, and 

3. Converting the result back to a difference equation. 

3




Design Lab 4 6.01 Fall 2011


Wk.4.3.1 Enter these equations into part 5 of tutor problem Wk.4.3.1. 

Checkoff 1. Wk.4.3.2: Explain your results to a staff member. 

3 State machines primitives and combinators


Objective: Build a state machine model of the wall finder system, based on its system 
diagram representation. 

The wall finder system, as represented by the system diagram of Figure 1, can be modeled as a 
combination of primitive state machines, using two basic constructs: sm.Gain and sm.R. This is 
true because the wall finder system is a “linear time-invariant” (LTI) system. 

The sm.Gain state machine is really just a pure function: the output at step n is the input at step 
n, times a constant, k. The state is irrelevant. The reason we create this as a type of state machine 
is that we want to use the principles of PCAP to be able to combine it with other state machines to 
create new kinds of state machines. 

class Gain(SM): 
def __init__(self, k): 

self.k = k 
def getNextValues(self, state, inp): 

return (state, self.k*inp) 

4


http://ocw.mit.edu/ans7870/6/6.01sc/documentation/sm.Gain-class.html
http://ocw.mit.edu/ans7870/6/6.01sc/documentation/sm.R-class.html


Design Lab 4 6.01 Fall 2011 

The sm.R state machine is a renamed version of the Delay state machine. It takes a value at ini
tialization time which specifies the initial output of the machine; thereafter, the output at step n 
is the input at step n − 1. 

class R(SM): 
def __init__(self, v0 = 0): 

self.startState = v0 
def getNextValues(self, state, inp): 

return (inp, state) 

For the purposes of building LTI systems, the feedback addition composition will be useful. It takes 
two machines and connects them like this (note that we are using generic boxes here, those boxes 
would be a triangle if the state machine were simply a gain, or would be labeled with an R if the 
state machine were a delay, or could be some more complicated feedback loop): 

m1

m2

+

If m1 and m2 are state machines, then you can create their feedback addition composition with 

newM = sm.FeedbackAdd(m1, m2) 

Now newM is itself a state machine. So, for example, newM = sm.FeedbackAdd(sm.R(0), 
sm.Gain(1)) makes a machine whose output is the sum of the inputs from step 0 up to but 
not including the present step. You can test it by feeding it a sequence of inputs; in the example 
below, it is the numbers 0 through 9: 

>>> newM.transduce(range(10)) 
[0, 0, 1, 3, 6, 10, 15, 21, 28, 36] 

Feedback subtraction composition is the same, except the output of m2 is subtracted from the input, 
to get the input to m1. (Note the minus sign next to the output of m2 as it is fed into the adder.) You 
can use it like this: 

newM = sm.FeedbackSubtract(m1, m2) 

m1

m2

+
−

Note that if you want to apply one of the feedback operators in a situation where there is only one 
machine, you can use sm.Gain(1.0) or sm.Wire() as the other argument. 

5




Design Lab 4 6.01 Fall 2011


Check Yourself 3. Use gains, delays, and adders to draw a system diagram for the first system 
in tutor problem Wk.4.2.1. (That is, the tutor problem that you did before 
coming to lab). 

Check Yourself 4. Use gains, delays, and adders to draw a system diagram for the second 
system in tutor problem Wk.4.2.1. 

Check Yourself 5. Use gains, delays, and adders to draw a system diagram for the third sys
tem in tutor problem Wk.4.2.1. 

Wk.4.3.3 Do tutor problem Wk.4.3.3 (State machine composition) 

6




Design Lab 4 6.01 Fall 2011


Check Yourself 6. Use gains, delays, and adders to draw a system diagram for the controller 
in the wall-finder system. 

Check Yourself 7. Use gains, delays, and adders to draw a system diagram for the plant in 
the wall-finder system. 

Check Yourself 8. Use gains, delays, and adders to draw a system diagram for the sensor in 
the wall-finder system. 

7




Design Lab 4 6.01 Fall 2011


Check Yourself 9. Connect the previous three component systems to make a diagram of the 
wall-finder system. Label all the wires. Draw boxes around the controller, 
plant, and sensor components. 

Checkoff 2. Wk.4.3.4 Explain your system diagrams to a staff member. Identify in
stances of cascade and feedback composition for the wall-finder system. 

Wk.4.3.5 Do tutor problem Wk.4.3.5. 
Write your code in designLab04Work.py. Each function should return an 
instance of state machine of the corresponding block. Test your code with 
> idle -n 
Then submit your code in the Tutor. 

With T=0.1 and an initial distance to the wall of 1.5 meters, experiment with different values 
of the gain. You can do this using the plotD procedure, defined in designLab04Work.py. Use 
idle -n. For a given gain value, k, it will make a plot of the sequence of distances to the wall. 

Check Yourself 10. Find three different values of k, one for which the distance converges mo
notonically, one for which it oscillates and converges, and one for which it 
oscillates and diverges. Make plots for each of these k values. Save screen 
shots (see Reference tab of the 6.01 website) for each of these plots. 

Wk.4.3.6 Enter the gains you found into the tutor. 

8


http:designLab04Work.py


Design Lab 4 6.01 Fall 2011


4 On the simulated robot


Objective: Implement a brain for the wall-finder problem using a state machine, as 
described in Section 2. 

Recall that the robot itself is the plant and so we do not need to write any code for that. We have 
already implemented a Sensor state machine which outputs a delayed version of the values of 
sonar sensor 3 (the robot actually has relatively little delay in its sensing). 

Your job is to implement the Controller state machine, which takes as input the output of the 
sensor state machine, and generates as output instances of io.Action with 0 rotational veloc
ity and an appropriate forward velocity. It should depend on dDesired, which is the desired 
distance to the wall. Do this by editing the getNextValues method of the Controller class 
in Desktop/6.01/designLab04/smBrainPlotDistSkeleton.py. Your controller should at
tempt to make the output of sonar sensor 3 be equal to 0.7, even though sensor 3 doesn’t point 
straight forward. 

Check Yourself 11. For each of the three gains you found Check Yourself 10, run the simulated 
robot in the wallFinderWorld.py world, and save the plots. 

Checkoff 3. Wk.4.3.7 Compare the plots from Check Yourself 10 and 11. Explain how 
they differ, and speculate about why. Email your code and plots to your 
partner. 

9


http:Desktop/6.01/designLab04/smBrainPlotDistSkeleton.py


MIT OpenCourseWare 
http://ocw.mit.edu 

6.01SC Introduction to Electrical Engineering and Computer Science 
Spring 2011 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

