
Read Section 8.2 of the class notes. See also Section 8.3 of the class notes for an 
example. 

One version of a standard puzzle called the Farmer, Goat, Wolf, Cabbage goes as 
follows: 

The farmer has a goat, a wolf and a head of cabbage (don't ask why a wolf...). 
They come to a river (they're on left bank) and need to get to the other side (the 
right bank). 
There's a boat there that fits at most two of them (it's a big head of cabbage); the 
farmer must always be one of the two in the boat. 
If the farmer leaves the goat and cabbage on the same side of the river, when he 
is not present the goat will eat the cabbage (so that's not a legal state). 
Similarly, if the farmer leaves the goat and the wolf on the same side of the river, 
when he is not present... well, that's not legal either. 

So, the problem is to find a sequence of actions that go from the initial state where 
they are all on the left bank to the final state when they are all on the right bank. 

We will implement this domain by defining a class which is a subclass of the SM class. 
We will then use search.smSearch to find sequences of actions. 

The state of the state machine needs to keep track of which bank of the river everyone 
is on. So, a state will be: 

(farmerLoc, goatLoc, wolfLoc, cabbageLoc) 

where each of these locations is 'L' or 'R' (for left or right). The boat is always with the 
farmer so no need to keep track of that. 

Assume that the actions are: 

'takeNone', 
'takeGoat', 
'takeWolf', and 
'takeCabbage'. 

Each action indicates a trip from whatever side of the river the farmer is on, to the 
opposite side of the river. 

Define the state machine class FarmerGoatWolfCabbageClass. The state machine needs to 
have a getNextValues method and a legalInputs attribute, which will serve the role of the 
successors function and actions list respectively. The startState of the state machine 
indicates the initial state for the search and the done method of the state machine 
serves as the goal test function. 

Make sure that no illegal or impossible actions are permitted, that is, states in which 
the goat and cabbage or the wolf and goat are alone together. Also, you must make 
sure that if the farmer is to take a passenger across the river, then the passenger must 
be on the same side of the river as the farmer. 

If your machine receives an input action that is illegal or impossible, it should simply 
stay in the same state. 

Problem Wk.13.1.2: Farmer et al.: Search

http://ocw.mit.edu/ans7870/6/6.01sc/documentation/search-module.html


Use the indices defined below to index the elements of the tuple. So state[wolf] is 
state[2], which is the third component of the state tuple. 

Note that states need to be tuples, not lists, so that they can be keys in the 
dictionary used in the search code to implement dynamic programming. If you 
need to turn a tuple x into a list, you can do that with list(x). If you need to turn a list 
x into a tuple, you can do that with tuple(x). 

You should write and debug your code in Idle, you can use the file 

swLab13Work.py 

which imports the relevant library files. When you have it working, paste your answer 
in below and check it. 

http://docs.python.org/tutorial/datastructures.html#tuples-and-sequences




MIT OpenCourseWare 
http://ocw.mit.edu 

6.01SC Introduction to Electrical Engineering and Computer Science 
Spring 2011 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

