
6.079/6.975, Fall 2009-10	 S. Boyd & P. Parrilo


Homework 8


1.	 Conformal mapping via convex optimization. Suppose that Ω is a closed bounded region 
in C with no holes (i.e., it is simply connected). The Riemann mapping theorem states 
that there exists a conformal mapping ϕ from Ω onto D = {z ∈ C | |z| ≤ 1}, the unit 
disk in the complex plane. (This means that ϕ is an analytic function, and maps Ω 
one-to-one onto D.) 

One proof of the Riemann mapping theorem is based on an infinite dimensional opti
mization problem. We choose a point a ∈ int Ω (the interior of Ω). Among all analytic 
functions that map ∂Ω (the boundary of Ω) into D, we choose one that maximizes the 
magnitude of the derivative at a. Amazingly, it can be shown that this function is a 
conformal mapping of Ω onto D. 

We can use this theorem to construct an approximate conformal mapping, by sampling 
the boundary of Ω, and by restricting the optimization to a finite-dimensional subspace 
of analytic functions. Let b1, . . . , bN be a set of points in ∂Ω (meant to be a sampling 
of the boundary). We will search only over polynomials of degree up to n, 

nϕ̂(z) = α1z + α2z n−1 + + αnz + αn+1,· · · 

where α1, . . . , αn+1 ∈ C. With these approximations, we obtain the problem 

maximize |ϕ̂�(a)|
subject to |ϕ̂(bi)| ≤ 1, i = 1, . . . , N, 

with variables α1, . . . , αn+1 ∈ C. The problem data are b1, . . . , bN ∈ ∂Ω and a ∈ int Ω. 

(a) Explain how to solve the problem above via convex or quasiconvex optimization. 

(b) Carry out your method on the problem instance given in conf_map_data.m. This 
file defines the boundary points bi and plots them. It also contains code that will 
plot ϕ̂(bi), the boundary of the mapped region, once you provide the values of αj ; 
these points should be very close to the boundary of the unit disk. (Please turn 
in this plot, and give us the values of αj that you find.) The function polyval 
may be helpful. 

Remarks. 

•	 We’ve been a little informal in our mathematics here, but it won’t matter. 

•	 You do not need to know any complex analysis to solve this problem; we’ve told 
you everything you need to know. 

•	 A basic result from complex analysis tells us that ϕ̂ is one-to-one if and only if 
the image of the boundary does not ‘loop over’ itself. (We mention this just for 
fun; we’re not asking you to verify that the ϕ̂ you find is one-to-one.) 
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2.	 Optimal amplifier gains. We consider a system of n amplifiers connected (for simplicity) 
in a chain, as shown below. The variables that we will optimize over are the gains 
a1, . . . , an > 0 of the amplifiers. The first specification is that the overall gain of the 
system, i.e., the product a1 · · · an, is equal to A, which is given. 

We are concerned about two effects: noise generated by the amplifiers, and amplifier 
overload. These effects are modeled as follows. 

We first describe how the noise depends on the amplifier gains. Let Ni denote the noise 
level (RMS, or root-mean-square) at the output of the ith amplifier. These are given 
recursively as 

N0 = 0, Ni 

� 
Ni

2 
−1 + α2 

�1/2 
, i = 1, . . . , n = ai i 

where αi > 0 (which is given) is the (‘input-referred’) RMS noise level of the ith 
amplifier. The output noise level Nout of the system is given by Nout = Nn, i.e., the 
noise level of the last amplifier. Evidently Nout depends on the gains a1, . . . , an. 

Now we describe the amplifier overload limits. Si will denote the (RMS) signal level 
at the output of the ith amplifier. These signal levels are related by 

S0 = Sin, Si = aiSi−1, i = 1, . . . , n, 

where Sin > 0 is the input signal level. Each amplifier has a maximum allowable output 
level Mi > 0 (which is given). (If this level is exceeded the amplifier will distort the 
signal.) Thus we have the constraints Si ≤ Mi, for i = 1, . . . , n. (A more accurate 
model would include the noise as well as the signal in the overload condition, but 
since the signal levels are usually much larger than the noise levels, we can reasonably 
neglect it here.) 

The maximum output signal level Smax is defined as the maximum value of Sn, over 
all input signal levels Sin that respect the the overload constraints Si ≤ Mi. Of course 
Smax ≤ Mn, but it can be smaller, depending on the gains a1, . . . , an. 

The dynamic range D of the system is defined as D = Smax/Nout. Evidently it is a 
(rather complicated) function of the amplifier gains a1, . . . , an. 

The goal is to choose the gains ai to maximize the dynamic range D, subject to the 
constraint i ai = A, and upper bounds on the amplifier gains, i.e., ai ≤ Ai (which 
are given).


Explain how to solve this problem as a convex (or quasiconvex) optimization problem.

If you introduce new variables, or transform the variables, explain. Clearly give the

objective and inequality constraint functions, explaining why they are convex if it is

not obvious. If your problem involves equality constraints, give them explicitly.
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3.	 Power flow optimization with ‘N − 1’ reliability constraint. We model a network of 
power lines as a graph with n nodes and m edges. The power flow along line j is denoted 
pj , which can be positive, which means power flows along the line in the direction of 
the edge, or negative, which means power flows along the line in the direction opposite 
the edge. (In other words, edge orientation is only used to determine the direction in 
which power flow is considered positive.) Each edge can support power flow in either 
direction, up to a given maximum capacity Pj 

max , i.e., we have |pj | ≤ Pj 
max . 

Generators are attached to the first k nodes. Generator i provides power gi to the 
network. These must satisfy 0 ≤ gi ≤ Gmax, where Gmax is a given maximum power i i 

available from generator i. The power generation costs are ci > 0, which are given; the 
total cost of power generation is cT g.


Electrical loads are connected to the nodes k + 1, . . . , n. We let di ≥ 0 denote the

demand at node k + i, for i = 1, . . . , n − k. We will consider these loads as given.

In this simple model we will neglect all power losses on lines or at nodes. Therefore,

power must balance at each node: the total power flowing into the node must equal

the sum of the power flowing out of the node. This power balance constraint can be

expressed as


Ap = 
−g

,
d 

where A ∈ Rn×m is the node-incidence matrix of the graph, defined by


Aij = 

⎧ ⎪⎨ ⎪⎩ 

+1 edge j enters node i,

−1 edge j leaves node i, 

0 otherwise.


In the basic power flow optimization problem, we choose the generator powers g and 
the line flow powers p to minimize the total power generation cost, subject to the 
constraints listed above. The (given) problem data are the incidence matrix A, line 
capacities P max, demands d, maximum generator powers Gmax, and generator costs c. 

In this problem we will add a basic (and widely used) reliability constraint, commonly 
called an ‘N − 1 constraint’. (N is not a parameter in the problem; ‘N − 1’ just means 
‘all-but-one’.) This states that the system can still operate even if any one power line 
goes out, by re-routing the line powers. The case when line j goes out is called ‘failure 
contingency j’; this corresponds to replacing Pj 

max with 0. The requirement is that 
there must exist a contingency power flow vector p(j) that satisfies all the constraints 
above, with p(

j
j) 

= 0, using the same given generator powers. (This corresponds to 
the idea that power flows can be re-routed quickly, but generator power can only be 
changed more slowly.) The ‘N −1 reliability constraint’ requires that for each line, there 
is a contingency power flow vector. The ‘N − 1 reliability constraint’ is (implicitly) a 
constraint on the generator powers. 

The questions below concern the specific instance of this problem with data given 
in rel_pwr_flow_data.m. (Executing this file will also generate a figure showing the 
network you are optimizating.) Especially for part (b) below, you must explain exactly 
how you set up the problem as a convex optimization problem. 
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(a)	 Nominal optimization. Find the optimal generator and line power flows for this 
problem instance (without the N − 1 reliability constraint). Report the optimal 
cost and generator powers. (You do not have to give the power line flows.) 

(b)	 Nominal optimization with N −1 reliability constraint. Minimize the nominal cost, 
but you must choose generator powers that meet the N −1 reliability requirement 
as well. Report the optimal cost and generator powers. (You do not have to give 
the nominal power line flows, or any of the contingency flows.) 

4.	 Optimizing a portfolio of energy sources. We have n different energy sources, such as 
coal-fired plants, several wind farms, and solar farms. Our job is to size each of these, 
i.e., to choose its capacity. We will denote by ci the capacity of plant i; these must 

min max min maxsatisfy ci ≤ ci ≤ ci , where ci and ci are given minimum and maximum values. 

Each generation source has a cost to build and operate (including fuel, maintenance, 
government subsidies and taxes) over some time period. We lump these costs together, 
and assume that the cost is proportional to ci, with (given) coefficient bi. Thus, the 
total cost to build and operate the energy sources is bT c (in, say, $/hour). 

Each generation source is characterized by an availability ai, which is a random variable 
with values in [0, 1]. If source i has capacity ci, then the power available from the plant 
is ciai; the total power available from the portfolio of energy sources is cT a, which is a 
random variable. A coal fired plant has ai = 1 almost always, with ai < 1 when one of 
its units is down for maintenance. A wind farm, in contrast, is characterized by strong 
fluctations in availability with ai = 1 meaning a strong wind is blowing, and ai = 0 
meaning no wind is blowing. A solar farm has ai = 1 only during peak sun hours, with 
no cloud cover; at other times (such as night) we have ai = 0. 

Energy demand d ∈ R+ is also modeled as a random variable. The components of 
a (the availabilities) and d (the demand) are not independent. Whenever the total 
power available falls short of the demand, the additional needed power is generated 
by (expensive) peaking power plants at a fixed positive price p. The average cost of 
energy produced by the peakers is 

E p(d − c T a)+, 

where x+ = max{0, x}. This average cost has the same units as the cost bT c to build 
and operate the plants. 

The objective is to choose c to minimize the overall cost 

C = bT c + E p(d − c T a)+. 

Sample average approximation. To solve this problem, we will minimize a cost 
function based on a sample average of peaker cost, 

1	 N

Csa = bT c + p(d(j) − c T a(j))+
N j=1 
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where (a(j), d(j)), j = 1, . . . , N , are (given) samples from the joint distribution of a and 
d. (These might be obtained from historical data, weather and demand forecasting, 
and so on.) 

Validation. After finding an optimal value of c, based on the set of samples, you 
should double check or validate your choice of c by evaluating the overall cost on 
another set of (validation) samples, (ã(j), d̃(j)), j = 1, . . . , Nval , 

Nval

Cval = bT c + 
N

1 
val 

� 
p(d̃(j) − c T ã(j))+. 

j=1 

(These could be another set of historical data, held back for validation purposes.) If 
Csa ≈ Cval, our confidence that each of them is approximately the optimal value of C 
is increased. 

Finally we get to the problem. Get the data in energy_portfolio_data.m, which 
includes the required problem data, and the samples, which are given as a 1 × N row 
vector d for the scalars d(j), and an n × N matrix A for a(j). A second set of samples 
is given for validation, with the names d_val and A_val. 

Carry out the optimization described above. Give the optimal cost obtained, Csa, and 
compare to the cost evaluated using the validation data set, Cval . 

Compare your solution with the following naive (‘certainty-equivalent’) approach: Re
place a and d with their (sample) means, and then solve the resulting optimization 
problem. Give the optimal cost obtained, Cce (using the average values of a and d). 
Is this a lower bound on the optimal value of the original problem? Now evaluate the 
cost for these capacities on the validation set, Cce,val . Make a brief statement. 
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