
Massachusetts Institute of Technology
Department of Electrical Engineering & Computer Science

6.345 Automatic Speech Recognition
Spring, 2003

Issued: 03/07/03
Due: 03/19/03

Assignment 5
Introduction to Hidden Markov Models

Introduction

Hidden Markov models (HMMs) are a class of statistical models useful for analyzing a discrete-
time series of observations such as a stream of acoustic tokens extracted from a speech sig-
nal. HMMs are very well-suited for speech recognition due to their inherent ability to represent
variable-duration acoustic events and the existence of efficient algorithms to automatically com-
pute model parameters from training data.

Software

In this lab, you will use a program called hmm tool. This program operates on discrete observation
HMMs. It has the capability to generate random observation sequences from an HMM, perform
the Viterbi search algorithm on an observation sequence for a particular HMM, and estimate an
HMM’s parameters using the Baum-Welch algorithm. For this lab you will utilize hmm tool on
artificial data in order to familiarize yourself with the properties of HMMs and their associated
algorithms. The hmm tool program operates directly from the UNIX command line. HMMs and
observation sequences are stored in ASCII files and passed to hmm tool through command line
options. To list the complete set of command line options available with hmm tool type:

% hmm_tool -help

Getting Started

To get started for this lab, type the following command at the UNIX prompt:

% start_lab5.cmd

This will make a local copy (in your home directory) of the set of files needed for this lab. These
files contain the hidden Markov models and observation sequences used during the lab. The usage
for hmm tool will also be displayed.

1

Part I: Symmetric HMMs

We will start with a class of HMMs called “symmetric” HMMs. The structure of symmetric HMMs
is sufficiently simple to permit direct estimation of model parameters from observed data instead of
iterative estimation using the Baum-Welch reestimation algorithm. An N-state symmetric HMM
has the following properties:

1. The size of the output alphabet is equal to the number of states N.

2. Every state can output only one symbol and no two states can output the same symbol. More
precisely, the B matrix is an N by N identity matrix. This basically means the model is not
“hidden” anymore.

3. All transitions leaving a node are equally likely (except self-transitions); i.e., for any given
state

�
, �����������
	���������� ����������������� � ����"!�# .

4. An N-state symmetric HMM is completely determined by its N self-loop transition proba-
bilities ��$ $%�&�(' '��*)+),)-�/.
021 '43 .5061 '43 .

Here is an example of a 4-state symmetric HMM:

3

.19

.40 .61

.79

.27

.27.20

.20

.13

.13

.07

.07

.27

.07

.13

.20

21

0

T1: Display the parameters of the two symmetric HMMs we will utilize and examine their prop-
erties with the commands:

% hmm_tool -hmm_in symmetric1.hmm -print_models
% hmm_tool -hmm_in symmetric2.hmm -print_models

Use symmetric1.hmm (which is actually the same as the model shown above) to generate
a single observation sequence 100 symbols long with the following command:

% hmm_tool -hmm_in symmetric1.hmm -generate 1 100 \
-print_obs -obs_out seq1.obs

2

Note that the observation sequence is written to the file seq1.obs. Compute and record
the number of times all 16 possible output symbol bigrams have occurred in the observation
sequence using the command:

% hmm_tool -hmm_in symmetric1.hmm -obs_in seq1.obs \
-count_bigrams

Generate another observation sequence 10,000 symbols long and compute and record the
bigram counts again (do not use the -print obs option this time to avoid printing 10,000
observations to the screen).

Q1: Derive a formula which estimates the self-loop transition probabilities directly from
the bigram counts which you computed. Use this formula together with the observed
counts to estimate the self-loop transition probabilities from both observation sequences.
Do the counts from the longer observation sequence yield more accurate estimates as
expected?

T2: The second HMM-model, symmetric2.hmm, differs from the first only in the transition
probability ����� which equals 1.0. Generate one observation sequence 5,000 symbols long
using symmetric2.hmm and compute the bigram counts.

Q2: What happens when you try to estimate self-loop transition probabilities for this HMM
and why? Would observing longer sequences help? What can you do to estimate the
self-loop transitions for this model?

Part II: Training via the Baum-Welch Algorithm

In this part of the lab, we will examine some issues related to training HMMs using the Baum-
Welch or Forward-Backward algorithm. We will be concerned with a 5-state left-to-right hidden
Markov model defined by the following transition and output probability matrices:

� �

�������
�

)��)
)
	 � �
�)��)
	 � �
� �)��)
)	� � �)��)	� � � � 	

��������
�

� �

�������
�

)��)�� � � � � � � �
� �)��)�� � � � � �
� � � � 	 � � � �
� � � � �)��)�� � �
� � � � � � �)��)��

��������
�

3

Note that A is upper-triangular, which makes the model left-to-right (backward transitions are
prohibited). We will generate some observations using this model and then use the Baum-Welch
training algorithm to train a new HMM model and examine how closely the estimates match those
of the actual model. We will explore the effect of different amounts of training data and the effect
of different initial A and B matrices.

T3: Examine the model 5-state-lr.hmm to see that it matches the A and B matrices above
with the command:

% hmm_tool -hmm_in 5-state-lr.hmm -print_models

Generate 10 observation sequences, each 50 symbols long, using this model:

% hmm_tool -hmm_in 5-state-lr.hmm -generate 10 50 \
-print_obs -obs_out seq2.obs

Examine the HMM 5-state-init1.hmm, which has the same zero elements in its A and
B matrices (i.e., the same forbidden transitions and outputs) as the actual model but the non-
zero elements are uniformly initialized. We will use 5-state-init1.hmm as the initial
model to the Baum-Welch reestimation algorithm for training an HMM from the observed
data. To perform Baum-Welch training using the observation sequence you just generated,
type the command:

% hmm_tool -hmm_in 5-state-init1.hmm -obs_in seq2.obs \
-bw 20 -print_models

Observe the log-likelihood score of the training data after each iteration and note how quickly
the Baum-Welch algorithm converges.

Next, generate 100 observation sequences of length 50 and again use 5-state-init1.hmm
as the initial model for reestimating the HMM parameters from the new set of 100 obser-
vation sequences. Compare the parameters of the models estimated from the 10 sequence
data and the 100 sequence data to the parameters of the actual model which generated the
sequences.

Q3: What is the ratio of the number of data points in the training data set to the number of
free parameters being estimated in the two training runs that you performed above? Is
there a noticeable difference in the quality of estimates of the A and B matrices between
the two training runs?

T4: We will now estimate the HMM parameters using more general initial HMMs. Examine the
three initial HMM models:

� 5-state-init2.hmm
� 5-state-init3.hmm
� 5-state-init4.hmm

4

Notice that 5-state-init2.hmm is a left-to-right model while 5-state-init3.hmm
and 5-state-init4.hmm are not. Use the Baum-Welch algorithm to estimate the HMM
parameters using the 100 sequence observation data generated in T3 starting with the initial
model 5-state-init2.hmm. Record the log-likelihood values of the training data after
each iteration. When training is finished, compare the parameter values of the estimated
HMM to those of the actual model.

Repeat this task for 5-state-init3.hmm and 5-state-init4.hmm.

Q4: On the same set of axes, plot the log-likelihood as a function of the number of iter-
ations observed in training 5-state-init2.hmm, 5-state-init3.hmm, and
5-state-init4.hmm. What can you say about the relative difficulty of training
more general models vs. more constrained ones? What can you conclude about the
importance of initializing the A and B matrices before beginning training?

Q5: What property of the Baum-Welch algorithm would account for major discrepancies
that you may have observed between the estimated and true parameters?

Part III: Trellis Representation and Viterbi Search

Both the Forward-Backward algorithm used in Baum-Welch reestimation and the Viterbi decoding
algorithm rely on the trellis (or graph) representation of hidden Markov models. This section of
the lab deals with the following 2-state HMM:

� �
�)��)��� 	��

� �
�)��))	

)��)��)����
T5: Generate and write down a sequence of 5 observations from the model shown above with the

command:

% hmm_tool -hmm_in 2-state-lr.hmm -generate 1 5 \
-print_models -print_obs

Q6: Use the attached answer sheet to draw a trellis for the sequence that you observed.
Compute all branch probabilities and determine the most likely path through the trellis.

Q7: Roughly estimate the length of an observation sequence which would cause underflow
in a typical computer if logarithms are not used; i.e., how long an observation sequence
will have a probability on the order of 	 � 1 ' $ $?

5

Part IV: Recognition with HMMs

In a typical HMM-based word recognition system, the acoustics of each word in the vocabulary
are represented by a separate hidden Markov model. Recognition can be accomplished by using
the Viterbi algorithm to compute the most likely hidden state sequence in each of the candidate
HMMs and then select the word corresponding to the HMM with the most likely state sequence.

T6: Each of these files:

� testA.obs
� testB.obs
� testC.obs

contains one sequence of 50 observations generated from one of the three HMMs:

� recognition1.hmm
� recognition2.hmm
� recognition3.hmm

The HMMs are 5-state left-to-right models which differ only in their B matrices. Use the
Viterbi search algorithm to compute the log-probability score of the most likely hidden state
sequence through each of the models for each of the observation sequences (make sure you
compute all 9 probabilities). For example, to compute the score between testA.obs and
recognition1.hmm, we can say:

% hmm_tool -hmm_in recognition1.hmm \
-obs_in testA.obs -viterbi

Q8: Make a ��� � table showing the computed Viterbi scores for each of the candidate mod-
els and each of the observation sequences. Which model was most likely to generate
each test sequence based on these scores? What other method of scoring can be used
to perform this recognition task?

Part V: Continuous Density HMMs

In class, we solved the three main HMM problems for the case when the observations were char-
acterized as discrete symbols chosen from a finite alphabet, and therefore we could use a discrete
probability density within each state of an HMM model. A more common class of HMMs is con-
tinuous density HMMs where the observations are continuous. The most general representation of
the probability density function (pdf) for which a reestimation procedure has been formulated is
the mixture of Gaussians of the form:

� �������
	 �
��
	� '�� � 	 #������ ��� � 	 ��� � 	�	

6

where ��� is the observation vector being modeled at time � , � � 	 is the mixture coefficient for the
k ��� mixture in state and # is the Gaussian density with mean vector � � 	 and covariance matrix
� � 	 for the k ��� mixture component in state .

In this problem, we will look at a simple approach for deriving the reestimation formula for the
mean for the simplified case of a single Gaussian observation pdf, that is, when the number of
mixtures � � 	 :

� ������� 	 � # � ��� ��� �%��� � 	
Q9: In order to find the reestimation formula for � � , we quantize the continuous random variable

using a set of bins derived from the continuous distribution. Let the values � � be quantized
so that each ����� � 	 for some value � . Notice here that the � 	 is now equivalent to an
observation symbol from the discrete case. Express � � as a function of � 	 and �� ��� � 	 where
�� � �4� 	 is the reestimation formula for the observation of the k ��� symbol in the j ��� state for
the discrete case and is given by:

�� ��� � 	 �

��
�
	���� � ��� � ���

� � � 	
��
� '

� � �, 	

Remember that � � � 	 is the probability of being in state at time � .
Hint: Start with the definition of the mean for a continuous random variable and approximate
the integration with a sum over the quantized values.

Q10: Show that the reestimation formula for � � , the mean of the Gaussian of state , is given by:

�/� �

��
� '

� � �) ���
��
� '

� � �, 	

7

Answer Sheet for Assignment5 Q6

0 0 0 0 0

11111

0

Observed

Sequence

0.0

1.0

0.0

Optimal
State

Sequence
0

Time

Directions:

1. Enter the 5 symbols which you have observed (from T5) on the top line.

2. Label each arc in the top diagram with the joint probability of that transition being taken and
the corresponding output being generated in the next state.

3. In the second diagram, enter in each box the probability of the most likely partial path
through that state and draw arrows connecting the states in the best partial paths.

4. Read off the most likely hidden state sequence from the second diagram and write the result
in the space provided.

8

