
∑

Chapter 11

Codes on graphs

In this chapter we will introduce the subject of codes on graphs. This subject forms an intellec-
tual foundation for all known classes of capacity-approaching codes, including turbo codes and
low-density parity-check (LDPC) codes.

There are many styles of graphical realizations of codes; e.g., parity-check realizations (Tanner
graphs), generator realizations, and trellis (state) realizations. More generally, we consider
“behavioral” realizations, in which the time axis of a trellis realization is replaced by a general
unordered graph.

We will first consider elementary linear behavioral realizations, in which the constraints are
given by sets of linear equations. We then generalize to cases in which the constraints are given
by linear codes. We show how behavioral realizations may be naturally represented by graphical
models of various types: in particular, Tanner graphs and normal (Forney) graphs. More general
classes of graphical models (e.g., factor graphs, Maarkov graphs, block diagrams, and Bayesian
networks) are discussed briefly in an Appendix.

Finally, we develop some elementary but important properties of graphical realizations, par-
ticularly the cut-set bound, which builds on the state space theorem.

11.1 Elementary realizations of linear block codes

We continue to restrict attention to linear (n, k) block codes over a finite field Fq . So far we
have seen several general methods of characterizing such codes:

•	 By a set of k generators {gj , 1 ≤ j ≤ k}. The code C is then the set of all linear combinations

i uigi of the generators over Fq .

•	 By a set of n − k generators {hj , 1 ≤ j ≤ n − k} for the dual code C⊥ . The code C is then
the set of all n-tuples y ∈ (Fq)n such that 〈y, hj 〉 = 0 for all j.

•	 By a trellis (state-space) realization. The code is then the set of all n-tuples corresponding
to paths through the trellis.

149

150 CHAPTER 11. CODES ON GRAPHS

We will see that these realizations are all special cases of a general class of realizations called
behavioral realizations (from the behavioral approach to system theory pioneered by Willems).
In general, a behavioral realization defines a code by a set of constraints that the code symbols
and other auxiliary state variables must satisfy.

For linear codes, we need consider only linear behavioral realizations, where the variables are
over a field and the constraints are linear. In the simplest case, the variables are field elements
and the constraints are linear equations involving the variables. In the general case, the variables
can be vector spaces over the field, and the constraints are expressed in terms of linear codes.

11.1.1 Elementary linear behavioral realizations

The elements of an elementary linear behavioral realization of a linear (n, k, d) block code over
Fq are as follows:

•	 The n code symbols y = {yi ∈ Fq , i ∈ I}, where I denotes the symbol index set.

•	 An additional set of s auxiliary variables s = {sj ∈ Fq , j ∈ J }, often called state (hidden,
latent, unobserved) variables, where the state variable index set J may be unrelated to I.

•	 A set of e linear homogeneous equations over Fq involving the components of the symbol
and state variables, called the constraint equations.

The full behavior B generated by the realization is the set of all combinations (y, s) (called
trajectories) of symbol and state variables that satisfy all constraint equations. The code C
generated by the realization is the set of all symbol n-tuples y that appear in any trajectory
(y, s) ∈ B; i.e., such that there exists some set s of state variables such that (y, s) ∈ B.

In general, the e linear homogeneous constraint equations may be written in matrix form as

yA + sB = 0,

where y is a row n-tuple of symbols, s is a row s-tuple of state variable components, and A and
B are n × e and s × e Fq -matrices, respectively. The set B of all solutions (y, s) to such a set
of equations is a subspace of the vector space (Fq)n+s of dimension dim B ≥ n + s − e, with
equality if and only if all equations are linearly independent.

The code C is the projection of B onto its first n components. The dimension of C is equal to
the dimension of B if and only if codewords corresponding to distinct trajectories are distinct.

We now show that generator matrices and parity-check matrices yield elementary behavioral
realizations of this kind.

151 11.1. ELEMENTARY REALIZATIONS OF LINEAR BLOCK CODES

Example 1 (generator realizations). Let G be a k × n generator matrix for C, whose k rows
form a set of linearly independent generators for C. Then C is the set of all n-tuples of the form
y = uG for some information k-tuple u ∈ (Fq)k. Thus C has an elementary linear behavioral
realization with a state k-tuple u and n constraint equations, namely

y − uG = 0.

For example, in the previous chapter we found the following trellis-oriented generator matrix
for the (8, 4, 4) RM code: ⎡

11110000	
⎤

⎥⎢ 01011010 ⎢ ⎥ ⎦⎣ 00111100
. (11.1)

00001111

This yields a linear behavioral realization with 4 state variables and 8 constraint equations,
namely the following linear homogeneous equations over F2:

y0 = u1;
y1 = u1 + u2;
y2 = u1 + u3;
y3 = u1 + u2 + u3;	 (11.2)
y4 = u2 + u3 + u4;
y5 = u3 + u4;
y6 = u2 + u4;
y7 = u4.

Example 2 (parity-check realizations). Let H be an (n − k) × n generator matrix for C⊥ .
Then C is the set of all n-tuples that satisfy the n − k constraint equations

yH T = 0.

This corresponds to an elementary linear behavioral realization with no state variables.

For example, since the (8, 4, 4) code C is self-dual, the generator matrix (11.1) is also a generator
matrix for C⊥ . This yields an elementary linear behavioral realization with no state variables
and 4 constraint equations, namely the following linear homogeneous equations over F2:

y0 + y1 + y2 + y3 = 0;

y1 + y3 + y4 + y6 = 0;	 (11.3)
y2 + y3 + y4 + y5 = 0;

y4 + y5 + y6 + y7 = 0.

This is evidently a more compact realization than the generator realization of Example 1— in
fact, it can be found by eliminating the state variables from Eqs. (11.2)— and, because it has
no state variables, it is better suited for checking whether a given 8-tuple y is in C. On the
other hand, in the generator realization the state 4-tuple u may be freely chosen and determines
the codeword— i.e., the generator realization is an input-output realization— so it is better for
generating codewords, e.g., in encoding or in simulation.

152 CHAPTER 11. CODES ON GRAPHS

11.1.2 Graphs of elementary linear behavioral realizations

We may draw a graph of an elementary linear behavioral realization as follows. In coding theory,
such a graph is called a Tanner graph.

The graph has two types of vertices, namely n + s vertices corresponding to the n symbol and
s state variables, and e vertices corresponding to the e constraint equations. An edge is drawn
between a variable vertex and a constraint vertex if the corresponding variable is involved in the
corresponding constraint. Thus the graph is bipartite; i.e., the vertices are partitioned into two
sets such that every edge connects a vertex of one type to one of the other type.

A generic Tanner graph therefore has the form of Figure 1(a). Here symbol variables are
represented by filled circles, state variables by open circles, and constraints by squares containing
a “+” sign, since all constraint equations are zero-sum (parity-check) constraints. ~ =

\ \
\~\

=

HHHHHHHHHH

HHHHHHHHHH

\ \
XXXXXXXXXX

XXXXXXXXXX
\ \

\. . .

HHHHHHHHHH

+ . . .

HHHHHHHHHH

+\� �� �\ ��
�

\ ��
\ ��

�
\ ��~ � �= � \� � + � +� \� ��� �� � \��� � �
� \��� � � \� � �� � . . . � � \ . . .=

HHHHHHHHHH

HHHHHHHHHH

n �� �\
�� �\��

�
�� � \\ +

XXXXXXXXXX
�

�� \�n
��

�
�

\ +

XXXXXXXXXX�� �
� �� = �

� ��

� �� � ��
. . . � �� . . . � ��

��� ���
n��� ��
= �

(a) (b)

Figure 1. (a) Generic bipartite Tanner graph, with symbol variables (filled circles), state vari-
ables (open circles), and zero-sum constraints (squares with “+”). (b) Equivalent normal graph,
with equality constraints replacing variables, and observed variables indicated by “dongles.”

Figure 1(b) shows an equivalent normal graph (also called a Forney graph). Here the variables
are replaced by equality constraints, so that all graph vertices represent constraints. Variables
are represented by edges; an equality constraint ensures that all of its incident edges represent
a common variable (as the edges in Tanner graphs do implicitly). Finally, a symbol variable
is indicated by a special “half-edge” (“dongle”) symbol incident on the corresponding equality
constraint. The dongle may be regarded as an input/output terminal that can connect the cor-
responding symbol variable with the outside world, whereas state variables are hidden, internal
variables that do not interact with the outside world.

The degree of a variable or equation will be defined as the degree (number of incident edges) of
the corresponding graph vertex— i.e., the degree of a variable is the number of equations that
it is involved in, and the degree of an equation is the number of variables that it involves. In
a Tanner graph, the sum of the variable degrees is equal to the sum of the constraint degrees,
since both are equal to the number of edges in the graph. In a normal graph, if we choose not
to count half-edges in vertex degrees, then the vertex degrees are the same.

153 11.1. ELEMENTARY REALIZATIONS OF LINEAR BLOCK CODES

Example 1 (generator realizations) (cont.) The Tanner graph corresponding to the generator
realization of the (8, 4, 4) code defined by Eqs. (11.2) is shown in Figure 2(a). Since each symbol
variable has degree 1 in this realization, the corresponding symbol vertex is located adjacent to
the unique constraint vertex with which it is associated. The equivalent normal graph is shown
in Figure 2(b); here symbol variables may simply be represented by dongles. ~

u4

u3

u2

u1

n

n

n

n

HHHHHHHHHH

XXXXXXXXXX

��������������������

XXXXXXXXXX

����������Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

XXXXXXXXXX

����������

XXXXXXXXXX

����������

����������

(a)
+

+

+

+

+

+

+

+

~

~

~

~

~

~

~

y7

y6

y5

y4

y3

y2

y1

y0

u4

u3

u2

u1

=

=

=

=

HHHHHHHHHH

XXXXXXXXXX

��������������������

XXXXXXXXXX

����������Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

XXXXXXXXXX

����������

XXXXXXXXXX

����������

����������

(b)
+

+

+

+

+

+

+

+

y7

y6

y5

y4

y3

y2

y1

y0

Figure 2. Generator realizations for (8, 4, 4) code. (a) Tanner graph. (b) Normal graph.

Example 2 (parity-check realizations) (cont.) The Tanner graph and normal graph of the
parity-check realization of the (8, 4, 4) code defined by Eqs. (11.3) are shown in Figure 3.

y0 ~ y0 =

y1 ~ =

HHHHHHHHHH

HHHHHHHHHH

y1XXXXXXXXXX

XXXXXXXXXXy2 ~ y2

HHHHHHHHHH

+ =

HHHHHHHHHH

+

����������

����������

y3 ~ y3

HHHHHHHHHH

+ =

HHHHHHHHHH

+� �XXXXXXXXXX���������� XXXXXXXXXX����������
� �

� �y4 ~ � y4 =+ +�
� �

XXXXXXXXXX���������� XXXXXXXXXX����������

�y5 ~ �
�

� + y5 = � � +
� � � ��

����������

����������
�� �� �y6 ~

�
� y6 = � �� �� �� �� �� y7y7 ~ = �
(a) (b)

Figure 3. Parity-check realizations for (8, 4, 4) code. (a) Tanner graph. (b) Normal graph.

The normal graphs of Figures 2(b) and 3(b) are duals, in the sense that one is obtained from
the other by replacing equality constraints by zero-sum constraints and vice versa. In general,
the dual of a generator realization for C will be a parity-check realization for C⊥, and vice versa;
here we have C = C⊥, since the (8, 4, 4) code is self-dual. This illustrates an important general
duality property of normal graphs, which we will not prove here: the dual of a normal graph
realization of a code is a realization of the dual code.

∑

∑

154	 CHAPTER 11. CODES ON GRAPHS

11.2 General linear behavioral realizations

We now generalize the elementary realizations above by letting symbol and state variables be
vector spaces of dimension m over Fq , or more particularly m-tuples over Fq , where the dimension
m may be different for each variable. Furthermore, we generalize to constraints that certain
subsets of variables must lie in certain small linear block codes over Fq .

The elements of a general linear behavioral realization of a linear (n, k) block code over Fq are
therefore as follows:

•	 A set of symbol mi-tuples {yi ∈ (Fq)mi , i ∈ I}, where I denotes the symbol variable index
set. We define n = I mi.

•	 A state index set J , and a set of state spaces Σj , j ∈ J , where Σj is a vector space over
Fq of dimension µj . Such a state space Σj may always be represented by a vector space of
µj -tuples, {Σj = (Fq)µj , j ∈ J }. We define s = J µj .

•	 A set of linear constraint codes {Ck , k ∈ K} over Fq , where each code Ck involves a certain
subset of the symbol and state variables, and K denotes the constraint index set.

Again, the full behavior B generated by the realization is the set of all trajectories (y, s) such
that all constraints are satisfied— i.e., such that for each k the values taken by the subset of
variables involved in the constraint code Ck forms a codeword in Ck— and the code C generated
by the realization is the set of all symbol sequences y that appear in any trajectory (y, s) ∈ B.

Notice that the constraint imposed by a zero-sum constraint constrains the d variables incident
on a zero-sum vertex of degree d to lie in the (d, d − 1, 2) zero-sum (SPC) code over Fq . Simi-
larly, an equality constraint of degree d constrains the d incident variables to lie in the (d, 1, d)
repetition code over Fq . Thus allowing each constraint code Ck to be an arbitrary linear code
generalizes the elementary linear behavioral realizations discussed earlier.

The generalization to variables of dimension m allows us to consider state spaces of dimension
larger than 1, which we need for general trellis (state-space) realizations. It also allows us to
consider the clustered symbol variables that arise in sectionalized trellis realizations.

We now show how trellis (state-space) realizations may be expressed as general linear behav-
ioral realizations.

Example 3 (trellis realizations). Let us consider an unsectionalized minimal trellis realization
of an (n, k) binary linear block code C on the time axis I = [0, n).

As we saw in the previous chapter, a minimal trellis realization of C may be defined by a
trellis-oriented generator matrix G for C comprising k minimal-span generators {gj , 1 ≤ j ≤ k}.
We thus have a one-to-one correspondence C ↔ (F2)k defined by uG ↔ u.

We need to define an index set J for the state spaces Σj , j ∈ J . When the symbol time index
set is I = [0, n), we define the state index set as J = [0, n], with the understanding that the
kth symbol comes after the kth state and before the (k + 1)st state. The initial and final state
spaces Σ0 and Σn have dimension 0; i.e., they are trivial.

We further need to define an explicit realization for the state spaces Σk . Let J (k) denote the set
of indices of the trellis-oriented generators gj that are active at state time k. The state code Sk at
state time k is then generated by the submatrix Gk = {gj , j ∈ J (k)}. We thus have a one-to-one
correspondence Sk ↔ (F2)|J (k)| defined by u|J (k)Gk ↔ u|J (k), where u|J (k) = {uj , j ∈ J (k)}.

155 11.2. GENERAL LINEAR BEHAVIORAL REALIZATIONS

Thus if we define a state space Σk whose alphabet is the set (F2)|J (k)| of |J (k)|-tuples u|J (k),
then we obtain a state space Σk of minimal dimension |J (k)| such that any codeword associated
with a state codeword u|J (k)Gk ∈ Sk passes through the state u|J (k) ∈ Σk , as desired.

The branch space Bk at symbol time k ∈ [0, n) is then the set of all (|J (k)|+|J (k+1)|+1)-tuples
(σk , yk , σk+1) that can actually occur. If K(k) denotes the subset of trellis-oriented generators
that are active at symbol time k, then by a similar development it can be seen that Bk is a one-
to-one linear function of u|K(k), so dim Bk = |K(k)|. We may thus view Bk as a linear constraint
code of length |J (k)| + |J (k + 1)| + 1 and dimension |K(k)|.

In summary, the elements of an unsectionalized minimal trellis realization of an (n, k) binary
linear block code C are therefore as follows:

•	 A set of binary symbol variables {Yk , k ∈ [0, n)};
•	 A set of state spaces {Σk , k ∈ [0, n]} of dimension |J (k)|, represented by binary |J (k)|-

tuples, where {gj , j ∈ J (k)} is the subset of trellis-oriented generators that are active at
state time k ∈ [0, n];

•	 A set of binary linear constraint codes {Bk , k ∈ [0, n)}, where Bk ⊆ Σk × Yk × Σk+1 and
dim Bk = |K(k)|, where {gj , j ∈ J (k)} is the subset of trellis-oriented generators that are
active at symbol time k ∈ [0, n).

The full behavior B of the trellis realization is then the set of all state/symbol sequences (s,y)
such that (sk , yk , sk+1) ∈ Bk for k ∈ [0, n). For each state/symbol sequence (s,y) in B, the state
sequence s represents a valid path through the code trellis, and the symbol sequence y represents
the corresponding codeword. If the trellis is minimal, then each path (s,y) corresponds to a
distinct codeword y, so |B| = |C|.

Continuing with our (8, 4, 4) example, its trellis-oriented generators (11.1) are active during
[0, 3), [1, 6), [2, 5) and [4, 7), respectively. Therefore the state space dimension profile is |J (k)| =
{0, 1, 2, 3, 2, 3, 2, 1, 0}, and the branch space dimension profile is |K(k)| = {1, 2, 3, 3, 3, 3, 2, 1}.

Figure 4(a) shows a Tanner graph of this minimal trellis realization, and Figure 4(b) is an
equivalent normal graph. Each state space Σk is labelled by its dimension. The state spaces
Σ0 and Σ8 do not need to be shown, because they are trivial and not actually involved in any
constraints. Each constraint code (branch space) Bk is labelled by its length and dimension.
Since the symbol variables Yk have degree 1, we use the special “dongle” symbol for them. Since
the state spaces Σk have degree 2, they are naturally represented by edges in a normal graph.

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

n n n n n n nB0 Σ1 B1 Σ2 B2 Σ3 B3 Σ4 B4 Σ5 B5 Σ6 B6 Σ7 B7

(2, 1) 1 (4, 2) 2 (6, 3) 3 (6, 3) 2 (6, 3) 3 (6, 3) 2 (4, 2) 1 (2, 1)

Figure 4(a). Tanner graph for minimal trellis realization of (8, 4, 4) code.

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

Σ1 Σ2 Σ3 Σ4 Σ5 Σ6 Σ7B0 B1 B2 B3 B4 B5 B6 B7

(2, 1) 1 (4, 2) 2 (6, 3) 3 (6, 3) 2 (6, 3) 3 (6, 3) 2 (4, 2) 1 (2, 1)

Figure 4(b). Equivalent normal graph for minimal trellis realization of (8, 4, 4) code.

∏ ∏

156 CHAPTER 11. CODES ON GRAPHS

Every trellis (state-space) realization has a similar chain graph, with constraint codes Bk

constraining one symbol variable Yk and two state variables, Σk and Σk+1. More generally, the
symbol variables Yk may have arbitrary dimension; i.e., symbols may be clustered. Note that in
any trellis realization all symbol variables have degree 1, and all nontrivial state variables have
degree 2. Note also that a trellis graph has no cycles (loops).

11.3 Graph-theoretic properties of graphical realizations

A graph illustrates dependency relationships. We now develop some elementary but important
connections between graph properties and dependencies.

11.3.1 Connectedness and independence

Suppose that a code C is the Cartesian product of two codes, C = C1 × C2. In other words, C
consists of the pairs of codewords (c1, c2) such that c1 ∈ C1, c2 ∈ C2. Then a realization of C
may be constructed from independent realizations of C1 and C2. A graph of such a realization
is a disconnected graph, with two component subgraphs representing C1 and C2, respectively.

Conversely, if a graph of a realization of C is disconnected, then C is evidently the Cartesian
product of the codes realized by the component subgraphs. In short, a code C has a realization
whose graph is disconnected if and only if C is the Cartesian product of shorter codes. Thus
disconnectedness is a graph-theoretic expression of independence.

11.3.2 Cut sets and conditional independence

A cut set of a connected graph is a minimal set of edges such that removal of the set partitions
the graph into two disconnected subgraphs.

Notice that a connected graph is cycle-free if and only if every edge is by itself a cut set.

In a normal graph, a cut set consists of a set of ordinary (state) edges, and may be specified
by the corresponding subset χ ⊆ J of the state index set J . If the cut set consists of a single
edge, then the cut set may be identified with the corresponding state variable Σj . If the cut set
consists of several edges, then it may be identified with the set of all corresponding state spaces
Σj , j ∈ χ. We will regard the Cartesian product of all these state spaces as a superstate variable
Σχ = j∈χ Σj . Note that the size of the alphabet of Σχ is |Σχ| = |Σj |, the product of the j∈χ
sizes of its component state spaces.

Figure 5 gives a high-level view of a realization with a cut set χ. Since removal of a cut set
partitions a graph into two disconnected subgraphs, it follows that the symbol variables, the
constraint codes, and the states not in χ are partitioned by the cut set into two disjoint subsets
connected only by the states in χ. We label these two components arbitrarily as the “past” P
and the “future” F relative to the cut set χ. The two subsets of symbol variables associated with
the past and future components are denoted by Y|P and Y|F , respectively. The states in the cut
set are regarded as a single superstate variable Σχ = {Σj , j ∈ χ}, with values sχ = {sj , j ∈ χ}.
The constraints and internal variables in the past and future components are agglomerated into
aggregate constraints CP and CF that jointly constrain the aggregate superstate variable Σχ and
the aggregate symbol variables Y|P and Y|F , respectively.

∏

157 11.3. GRAPH-THEORETIC PROPERTIES OF GRAPHICAL REALIZATIONS
Y Y|P |F

ΣχCP CF

Figure 5. High-level view of a realization with a cut set χ.

Figure 5 makes it clear that a cut set in the graph corresponds to a certain conditional inde-
pendence (Markov) property: given that the state variables in the cut set have a certain set of
values sχ = {sj , j ∈ χ}, the possible values of Y|F depend only on sχ and not otherwise on the
“past” P, and vice versa. In other words, the superstate variable value sχ is a sufficient statistic
for the past with respect to the set of possible futures, and vice versa.

More concretely, let Y|P (sχ) and Y|F (sχ) denote the sets of possible past and future symbol
values that are consistent with a given superstate value sχ, in view of the constraints CP and CF .
Then the set of possible codewords consistent with sχ is the Cartesian product Y|P (sχ)×Y|F (sχ).
(In effect, fixing the value of the superstate removes the corresponding edge and disconnects the
graph.) The set C of all possible codewords is then the union of such Cartesian products over
all superstates: ⋃

C = Y|P (sχ) × Y|F (sχ). (11.4)
sχ∈Σχ

11.3.3 The cut-set bound

Observe that (11.4) is a generic expression for a code C generated by a two-section trellis with
central state space Σχ, and that Figure 5 is a generic normal graph for such a two-section trellis.
This observation leads directly to a lower bound on the size of Σχ:

Theorem 11.1 (Cut-set bound) Given a graphical realization of a code C and a cut set χ, the
size |Σχ| = |Σj | of the alphabet of the superstate variable Σχ = {Σj , j ∈ χ} is lowerbounded j∈χ
by the minimal state space size in a conventional trellis in which the symbol variables are divided
into “past” and “future” in the same way.

If C is linear, then minimal state space size is given by the state space theorem for linear codes.

For example, by the cut-set bound and the Muder bound, given any graphical realization of
the (8, 4, 4) binary code and any cut set that partitions the code symbols into two subsets of
size 4, the size of the alphabet of the superstate variable Σχ must be at least 4.

We can draw some important general conclusions from the cut-set bound.

First, consider cycle-free graphical realizations. In a cycle-free realization, every edge (state
variable) is a cut set, and therefore the size of every state space is lowerbounded by the minimal
size of a state space in some conventional trellis in which the symbol variables are partitioned
into “past” and “future” in the same way. Therefore we cannot expect any great reduction in
state space sizes from using general cycle-free graphs rather than conventional trellis realizations.

On the other hand, significant reductions in state space size are possible if we use graphs with
cycles. Then cut sets will generally correspond to multiple state variables, and the complexity
mandated by the cut-set lower bound may be spread out across these multiple state spaces.

We now illustrate these general conclusions by considering two particular styles of realizations:
tail-biting trellis realizations, and Hadamard-transform-based realizations of Reed-Muller codes.

158 CHAPTER 11. CODES ON GRAPHS

11.3.4 Tail-biting trellis realizations

A tail-biting trellis, illustrated in Figure 6, is a trellis in which the topology of the time axis
is that of a circle rather than an interval. In other words, the ending state variable is also the
starting state variable, and its alphabet may be of any size.

�	

�

Figure 6. Normal graph of a tail-biting trellis realization.

In a tail-biting trellis realizations, all cut sets involve two state variables. Therefore the
minimum complexity mandated by the cut-set bound may be spread out over two state spaces,
each of which may be as small as the square root of the cut-set lower bound.

For a simple but not very impressive example, consider the (8, 4, 4) code. Figure 7(a) shows a
two-section, four-state conventional trellis realization which clusters four symbol bits at a time,
which as we saw in Chapter 10 is an optimal sectionalization. Figure 7(b) shows a two-section
tail-biting trellis realization with two 2-state state spaces, which in this case may be obtained
merely by splitting the central state space of Figure 7(a). Thus the square root lower bound is
achieved. Note however that while Figure 7(b) has smaller state spaces, it is no longer cycle-free.

1' $

4 4

2
 4 4

(6, 3) (6, 3) (6, 3) (6, 3)
1& %

(a) (b)

Figure 7. (a) Two-section, four-state trellis for (8, 4, 4) code;
(b) Two-section, two-state tail-biting trellis realization.

More impressively, it has been shown that the state complexity of a 12-section realization of the
(24, 12, 8) Golay code may similarly be reduced from 256 (the minimum permitted by the Muder
bound; see Exercise 10.6) to 16 by using a tail-biting realization. A “tail-biting trellis-oriented”
generator matrix that yields this 16-state tail-biting realization is as follows:

11 01 11 01 11 00 00 00 00 00 00 00
00 11 11 10 01 11 00 00 00 00 00 00
00 00 11 01 10 11 11 00 00 00 00 00
00 00 00 11 01 11 01 11 00 00 00 00
00 00 00 00 11 01 11 01 11 00 00 00
00 00 00 00 00 11 11 10 01 11 00 00
00 00 00 00 00 00 11 01 10 11 11 00
00 00 00 00 00 00 00 11 01 11 01 11
11 00 00 00 00 00 00 00 11 01 11 01
01 11 00 00 00 00 00 00 00 11 11 10
10 11 11 00 00 00 00 00 00 00 11 01
01 11 01 11 00 00 00 00 00 00 00 11

[]

159 11.3. GRAPH-THEORETIC PROPERTIES OF GRAPHICAL REALIZATIONS

Note that there are 4 “active” generators at each of the 12 state times, if we take the time axis
to be circular (“end-around”). On the other hand, if we were to assume a conventional time
axis, then at least 8 generators would have to be active at the central state time.

Note also that if we “unwrap” these generators onto an infinite conventional time axis, then we
get generators for a rate-1/2 16-state period-4 time-varying (or rate-4/8 16-state time-invariant)
binary linear convolutional code, as follows:

· · ·
. . . 00 11 01 11 01 11 00 00 00 00 . . .
. . . 00 00 11 11 10 01 11 00 00 00 . . .
. . . 00 00 00 11 01 10 11 11 00 00 . . .
. . . 00 00 00 00 11 01 11 01 11 00 . . .

· · ·

This “Golay convolutional code” has a minimum Hamming distance of 8 and an average of
Kb = 12.25 weight-8 codewords per information bit, so its nominal coding gain is γc = 4 (6 dB)
and its effective coding gain is γeff = 5.3 dB, which are remarkable for a 16-state rate-1/2 code.

In summary, by considering a state realization with a single cycle rather than a conventional
trellis realization, we may be able to obtain a state complexity as small as the square root of
the minimum state complexity of a conventional trellis.

11.3.5 Hadamard-transform-based realizations of RM codes

In Exercise 6 of Chapter 6, it was shown that all Reed-Muller codes RM(r,m) of length 2m could
be generated by a single “universal” 2m × 2m generator matrix Um = (U1)⊗m, the m-fold tensor
product of the 2 × 2 matrix U1 = 1 0 with itself. The matrix Um is called the Hadamard

1 1

transform matrix over F2. For any binary 2m-tuple u ∈ (F2)2
m

, the binary 2m-tuple y = uUm

is called the Hadamard transform of u. Since (Um)2 = I2m , the identity matrix, it follows that
the Hadamard transform of y is u; i.e., u = yUm

More particularly, RM(r,m) = {y = uUm}, where the coordinates of the binary 2m-tuple u are
free in the k(r,m) positions corresponding to the k(r,m) rows of Um of weight 2m−r or greater,
and fixed to 0 in the remaining coordinates. In other words, RM(r,m) is the set of Hadamard
transforms of all 2k(r,m) binary 2m-tuples that are all-zero in a certain 2m − k(r,m) coordinates.
(Compare the Fourier transform characterization of Reed-Solomon codes in Chapter 8.)

We can construct a graphical realization of a Hadamard transform as follows. The 2 × 2
Hadamard transform y = uU1 is explicitly given by the two equations

y0 = u0 + u1;
y1 = u1,

which are realized by the normal graph of Figure 8. (This is sometimes called a controlled-not
gate, where y1 = u1 is regarded as a control variable.)

+y0 u0

=y1 u1

Figure 8. Normal graph of a 2 × 2 Hadamard transform.

� @

@ �

� @

@ �

�

160 CHAPTER 11. CODES ON GRAPHS

Note that there are no arrows (directed edges) in this behavioral realization. Either u or y
may be taken as input, and correspondingly y or u as output; i.e., the graph is a realization of
either the Hadamard transform y = uU1 or the inverse Hadamard transform u = yU1.

A 2m × 2m Hadamard transform y = uUm may then be realized by connecting these 2 × 2
transforms in tensor product fashion. For example, the 8 × 8 Hadamard transform is given
explicitly by the eight equations

y0 = u0 + u1 + u2 + u3 + u4 + u5 + u6 + u7;
y1 = u1 + u3 + u5 + u7;
y2 = u2 + u3 + u6 + u7;
y3 = u3 + u7;
y4 = u4 + u5 + u6 + u7;
y5 = u5 + u7;
y6 = u6 + u7;
y7 = u7.

These equations are realized by the tensor product graph of Figure 9. (Compare the “butterflies”
in the graph of an 8 × 8 fast Fourier transform.)

+ + +y0 u0

= = =y1 u4
@ ��

@� @ �
�@+ + +y2 u2

A �
A �
�A= = =y3 u6

B � A �
� �B A

� B � A+ + +y4 u1
�B

� B
� B= = =y5 u5

B
@� � B

� BB+ + +y6 u3

= = =y7 u7

Figure 9. Normal graph of an 8 × 8 Hadamard transform.

A Reed-Muller code of length 8 may then be realized by fixing certain of the uk to zero while
letting the others range freely. For example, the (8, 4, 4) code is obtained by fixing u0 = u1 =
u2 = u4 = 0, which yields the equations

y0 = u3 + u5 + u6 + u7;
y1 = u3 + u5 + u7;
y2 = u3 + u6 + u7;
y3 = u3 + u7;

161 11.3. GRAPH-THEORETIC PROPERTIES OF GRAPHICAL REALIZATIONS

y4 = u5 + u6 + u7;
y5 = u5 + u7;
y6 = u6 + u7;
y7 = u7.

These equations are realized by the graph of Figure 10(a), which may be simplified to that
of Figure 10(b). Here we regard the “inputs” uj as internal variables, and the “outputs” yk as
external variables.

y0 + + + 0 y0 + u6

y1 =
@ �

=
@ � �

= 0 y1 =
�@

u3 + u5
+u7

=
@

u6

�@ @ � �@ @
y2 + � @ +

A �
� @ + 0 y2 + �u6 @ +

A
u5 @

A � A
y3 = =

B �
� A
A �

= u6 y3 = u3 + u7 A
A �

� B �A �A
y4 + + �

�
�B

B
A + 0 y4 + u6

�
� A

� B �
y5 =

@ �
= �

�
B
B

= u5 y5 =
�@

u5 + u7 = �
�

�@ � B �@ �
y6 + � @ + � B B + u3 y6 + � @u6 + �

y7 = = = u7 y7 = u7

Figure 10. (a) Normal graph of (8, 4, 4) RM code. (b) Equivalent realization.

In Figure 10(b), all state variables are binary and all constraint codes are simple (3, 2, 2) parity-
check constraints or (3, 1, 3) repetition constraints. It is believed (but not proved) that this
realization is the most efficient possible realization for the (8, 4, 4) code in this sense. However,
Figure 10(b) has cycles.

It is easy to see how the cycle-free graph of Figures 7(a) (as well as 7(b), or a minimal four-
section, four-state trellis) may be obtained by agglomerating subgraphs of Figure 10(b). Such
a graph is depicted in Figure 11. The code symbols are partitioned into four 2-tuples. A state
space of dimension 2 connects the two halves of a codeword (meeting the cut-set bound). Two
constraint codes of length 6 and dimension 3 determine the possible combinations of symbol
4-tuples and state 2-tuples in each half of the code.

y4y5y2y
�
3�
2@ �

@
2@2(6, 3) (6, 3)

@
�
2
�y0y

@
1@
2�

y6y7

Figure 11. Tree-structured realization of (8, 4, 4) RM code.

162 CHAPTER 11. CODES ON GRAPHS

Similarly, we may realize any Reed-Muller code RM(r,m) in any of these styles. By starting
with a Hadamard transform realization as in Figure 10(a) and reducing it as in Figure 10(b), we
can obtain a realization in which all state variables are binary and all constraint codes are simple
(3, 2, 2) parity-check constraints or (3, 1, 3) repetition constraints; however, such a realization will
generally have cycles. By agglomerating variables, we can obtain a tree-structured, cycle-free
realization as in Figure 11 which reflects the |u|u + v| iterative RM code construction.

Exercise 1. (Realizations of repetition and SPC codes)

Show that a reduced Hadamard transform realization of a repetition code RM(0, m) or a
single-parity-check code RM(m−1, m) is a cycle-free tree-structured realization with a minimum
number of (3, 1, 3) repetition constraints or (3, 2, 2) parity-check constraints, respectively, and
furthermore with minimum diameter (distance between any two code symbols in the tree).
Show that these two realizations are duals; i.e., one is obtained from the other via interchange

of (3, 2, 2) constraints and (3, 1, 3) constraints.

Exercise 2. (Dual realizations of RM codes)

Show that in general a Hadamard transform (HT) realization of any Reed-Muller code
RM(r,m) is the dual of the HT realization of the dual code RM(m − r − 1, m); i.e., one is
obtained from the other via interchange of (3, 2, 2) constraints and (3, 1, 3) constraints.

Exercise 3. (General tree-structured realizations of RM codes)

Show that there exists a tree-structured realization of RM(r,m) of the following form:

2m−2 2m−2 C2 C2 s(r,m) s(r,m)�HHH ��
s(r,m)C1 C1

�� HHH�s(r,m) s(r,m)
2m−2 2m−2 C2 C2

Figure 12. Tree-structured realization of RM(r,m).

Show that s(r,m) = dim RM(r,m − 1) − dim RM(r − 1, m − 1) (see Exercise 1 of Chapter 10).
Show that the cut-set bound is met everywhere. Finally, show that

dim C2 = dim RM(r,m − 2);
dim C1 = dim RM(r,m − 1) − 2 dim RM(r − 2, m − 2) = t(r,m),

where t(r,m) is the branch complexity of RM(r,m) (compare Table 1 of Chapter 6). For example,
there exists a tree-structured realization of the (32, 16, 8) RM code as follows:

6 6HHH

(14, 7)8

�
(14, 7) 8

��
6(18, 9) (18, 9)

�� 6
8 (14, 7)

6�
8(14, 7)

HHH

Figure 13. Tree-structured realization of (32, 16, 8) RM ocde.

11.4. APPENDIX. CLASSES OF GRAPHICAL REALIZATIONS 163

11.4 Appendix. Classes of graphical realizations

There are various classes of graphical realizations that can be used for general linear behavioral
realizations. Here we will briefly discuss factor graphs, Markov graphs,, and block diagrams.

11.4.1 Factor graphs

A factor graph represents a global function of a set of variables (both internal and external) that
factors into a product of local functions defined on subsets of the variables.

The indicator function ΦB(y, s) of a behavior B is a {0, 1}-valued function of external variables
y and internal variables s that equals 1 for valid trajectories (y, s) and equals 0 otherwise. If a
trajectory (y, s) is valid whenever its components lie in a set of local constraint codes {Ck , k ∈ K},
then the global indicator function ΦB is the product of local indicator functions {ΦCk , k ∈ K}.
Thus a behavioral realization may be represented by a factor graph.

A Tanner-type factor graph is an undirected bipartite graph in which variables are represented
by one type of vertex (with internal and external variables denoted differently), and functions
are represented by a different type of vertex. A Tanner graph of a behavioral realization may
be interpreted as a Tanner-type factor graph simply by regarding the constraint vertices as
representatives of constraint indicator functions. Similarly, a normal (Forney-type) factor graph
is an undirected graph in which internal variables are represented by edges, external variables
are represented by dongles, and functions are represented by vertices; in the same way a normal
graph of a behavioral realization may be interpreted as a normal factor graph.

In the following chapters, we will be interested in global probability functions that factor into
a product of local probability functions; then factor graphs become very useful.

11.4.2 Markov graphs

Markov graphs are often used in statistical physics and statistical inference to represent global
probability distributions that factor into a product of local distributions.

A Markov graph (Markov random field) is an undirected graph in which variables are repre-
sented by vertices, and a constraint or function is represented by an edge (if it has degree 2), or
by a hyperedge (if it has degree greater than 2). Moreover, a hyperedge is usually represented by
a clique, i.e., a set of ordinary edges between every pair of variables incident on the hyperedge.
(This style of graph representation sometimes generates inadvertent cliques.)

Markov graphs are particularly nice when the degrees of all constraints are 2 or less. Such a
representation is called a pairwise Markov graph. We may then represent constraints by ordinary
edges. Pairwise constraints often arise naturally in physical models.

Figure 14 shows how any Tanner graph (or Tanner-type factor graph) may be transformed
into a pairwise Markov realization by a simple conversion. Here each constraint code has been
replaced by a state “supervariable” whose alphabet is the set of all codewords in the constraint
code. Each edge then represents the constraint that the associated ordinary variable must be
equal to the corresponding component of the supervariable.

� �
�

�
�

�
�

�
�

164 CHAPTER 11. CODES ON GRAPHS

\ \
\ \HHHHHH

HHHHHH
XXXXXX

XXXXXX. . .
HH\HHHH

+ . . .
HH\HHHH

��
�� \ �� ��� � \� ��\

HHHHHH

HHHHHH
XXXXXX

XXXXXX���
��

�
�\\+ � \\ h��

x x

xhh

x x

xhh
hh��\ \�� ���\�+ � �� ����.

��
�� �� �.

� �

Figure 14. (a) Tanner graph. (b) Equivalent pairwise Markov graph.

For example, suppose the constraint code has degree 3 and constrains three incident variables
(y1, y2, y3) to satisfy the parity check y1 + y2 + y3 = 0; i.e., the constraint code is a (3, 2, 2) code

h

with four codewords, namely {000, 110, 101, 011}. We then define a supervariable y123 to have
these codewords as its alphabet, and constrain y1 to equal the first component of y123, etc.

11.4.3 Block diagrams and directed normal graphs

Conventional block diagrams may often be regarded as normal graphs, with the vertices
(“blocks”) representing constraints, and the edges labeled by internal or external variables.

However, one difference is that the blocks usually represent input-output (causal) relationships,

h

so a block diagram is usually a directed graph in which the edges are also labelled with arrows,
indicating the direction of causality. In this respect block diagrams resemble Bayesian networks,
which are directed acyclic graphs representing probabilistic cause-and-effect models.

This style of graphical model can sometimes be superimposed on a normal graph, as follows. If a
constraint code is a linear (n, k) code and has an information set of size k, then the corresponding
k symbols may be regarded as “inputs” to the constraint, and the remaining n − k symbols as
“outputs” determined by the inputs. Arrows may be drawn on the edges to represent such
input-output relationships. If arrows can be drawn consistently on all edges in this way, then a
normal graph may be converted to a directed normal graph (block diagram).

For example, Figure 15 shows how a parity-check realization for the (8, 4, 4) code (Figure 3(b))
may be converted to directed normal graph form. This could be useful if, for example, we wanted
to use such a graph to implement an encoder. However, this example is a bit misleading, as
parity-check realizations cannot always be converted to encoders in this way.

-=
-=

HHHHHH
XXXXXXjz--=
HHHHHH

+
������
9 j�=
HHHHHH

+-:�XXXXXXXXXXXX������������
- �j-= z+�XXXXXXXXXXXX������
�=9 � z-

� �
:+�

������
=�=� ���� �=�

Figure 15. Conversion of parity-check realization of (8, 4, 4) code to directed normal graph
representing an encoder.

� �� �

(a) (b)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

