Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.551J / HST 712J Problem Set 4 Issued: October 7, 2004 Due: October 14, 2004

Problem 1.

Assume that the volume velocity through an acoustic mass M_A is $u(t) = U \cos 2\pi f t$.

- a. Determine an expression for the pressure p(t) across the acoustic mass.
- b. Sketch graphs of u(t) and p(t) over the time interval $0 \le t < 1/f$. Use the axes provided in Fig. 5. Provide scales for the axes. You may assume f = 1.
- c. Determine an expression for the acoustic power w(t) supplied to the acoustic mass in terms of M_A , U, and f.
- d. What is the average power over one time period (e.g., $0 \le t < 1/f$) supplied to the acoustic mass?
- e. Determine an expression for the energy $E_M(t)$ stored in the acoustic mass in terms of M_A , U, and f.
- f. What is the average value of $E_M(t)$ over one time period (e.g., $0 \le t < 1/f$)?
- g. Sketch graphs of w(t) and $E_M(t)$ over one time period (e.g., $0 \le t < 1/f$). Use the axes provided in Fig. 5.

You may find the following trigonometric identities helpful:

$$\cos x \times \cos y = \frac{1}{2}\cos(x-y) + \frac{1}{2}\cos(x+y)$$

$$\sin x \times \cos y = \frac{1}{2}\sin(x+y) + \frac{1}{2}\sin(x-y)$$

$$\sin x \times \sin y = \frac{1}{2}\cos(x-y) - \frac{1}{2}\cos(x+y)$$

Problem 2.

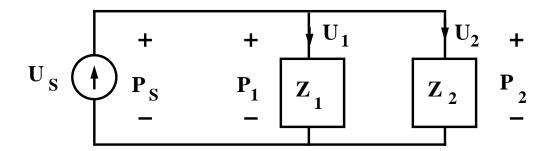


Figure 1: Example of an acoustic circuit consisting of a volume velocity source and two elements connected *in parallel*. All pressures and volume velocities are assumed to have the same e^{st} time dependence.

The acoustic circuit in Fig. 1 is an example of a *parallel* connection of acoustic elements.

- a. Identify the nodes in this circuit. Write equations expressing Kirchoff's Volume Velocity Law at all nodes. Show that one of the equations can be derived from the others.
- b. Write equations expressing Kirchoff's Pressure Law for the loops of the circuit. How many independent equations can be written.
- c. Use the equations expressing Kirchoff's Pressure Law to specify a general principle for circuit elements connected in parallel.
- d. Combine this result with the equations expressing Kirchoff's Volume Velocity Law to determine an expression for the impedance $Z = P/U_S$.
- e. Generalize this result to the case in which more than two impedances are connected in parallel.
- f. Determine expressions for the volume velocities U_1 and U_2 and for the volume velocity ratio U_1/U_2 . What property of the circuit elements determines this ratio?

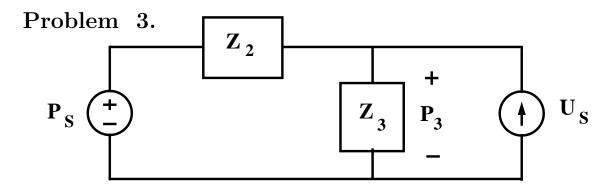


Figure 2: An acoustic circuit consisting of a pressure source, a volume velocity source and two impedances. All pressures and volume velocities are assumed to have the same e^{st} time dependence.

For the circuit of Fig. 2

- a. Write equations for the pressure differences "across" and the volume velocities "through" each of the elements in Figure 2.
- b. Write equations that express Kirchoff's pressure and volume velocity laws for the nodes and loops of this circuit.
- c. Solve the equations formulated in parts (a) and (b) of this problem to determine an expression for P_3 in terms of U_S , P_S , Z_2 and Z_3 .
- d. Determine P_3 in terms of P_S , Z_2 and Z_3 when $U_S = 0$.
- e. Determine P_3 in terms of U_S , Z_2 and Z_3 when $P_S = 0$.
- f. Use of the Superposition Principle to determine P_3 in terms of U_S , P_S , Z_2 and Z_3 . Make use of your results to parts (d) and (e) of this problem.

Problem 4.

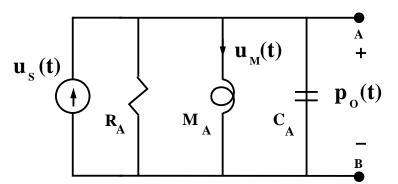


Figure 3: Example of an acoustic circuit consisting of a volume velocity source, an acoustic mass, an acoustic resistance, and an acoustic compliance connected in parallel. All pressures and volume velocities are assumed to have the same e^{st} time dependence, i.e. $u_S(t) = U_S e^{st}$, $u_M(t) = U_M e^{st}$, and $p_O(t) = P_O e^{st}$.

For the acoustic circuit of Fig. 3 the system function that relates the amplitude of the pressure P_O across the volume velocity source to the amplitude of the volume velocity source is $Z(s) = P_O/U_S$ and the system function that relates the amplitude of the volume velocity through the acoustic mass to the amplitude of the volume velocity source is $G(s) = U_M/U_S$. When $s = j\omega$

$$\mathbf{Z}(j\omega) = |\mathbf{Z}| e^{j\theta_{\mathbf{Z}}}$$
(1)

$$\mathbf{G}(j\omega) = |\mathbf{G}| e^{j\theta_G} \tag{2}$$

- a. Determine an expression (in terms of s, M_A , R_A , and C_A) for the impedance Z.
- b. Determine an expression (in terms of s, M_A , R_A , and C_A) for the volume velocity transfer ratio G
- c. Identify the poles and zeroes of Z and G. Do these two system functions have the same poles? How do the poles and zeroes of Z and G differ from the poles and zeroes of Y and H in Example 2 of the class notes?
- d. Determine approximate expressions for the dependence of Z(s) and G(s) on s in the two limiting cases: i) $s \to 0$, and ii) $s \to \infty$.
- e. Plot graphs of $|\mathbf{G}(j\omega)|$, $|\mathbf{Z}(j\omega)| \theta_G(j\omega)$, and $\theta_H(j\omega)|$, $|\mathbf{Z}(j\omega)| \theta_G(j\omega)$ as functions of ω on the axes provided in Fig. 6 and 7. As in the Class Notes, assume $R/\sqrt{M/C} = 0.1$.

Problem 5.

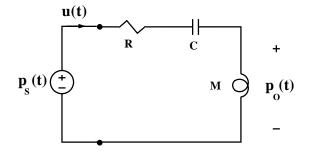


Figure 4: Example of an acoustic circuit consisting of a pressure source, an acoustic mass, an acoustic resistance, and an acoustic compliance, all connected in series. All pressures and volume velocities are assumed to have the same e^{st} time dependence.

Assume that all pressures and volume velocities in the circuit of Fig. 4 are sinusoidal with frequency $\omega = 1/\sqrt{MC}$.

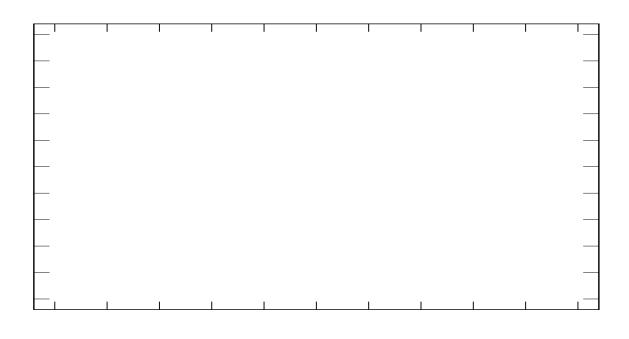
a. Determine an expression for the vector power

$$\mathbf{W} = \frac{1}{2} \mathbf{P} \mathbf{U}_{\mathbf{S}}^*$$

supplied to the portion of the circuit to the right of the terminals in terms of U_S , R, M, and C.

b. At the frequency $\omega = 1/\sqrt{MC}$, what is the relation between the time average¹ energy stored in the acoustic mass and the time average energy stored in the acoustic compliance?

¹Over one period of $p_S(t)$.



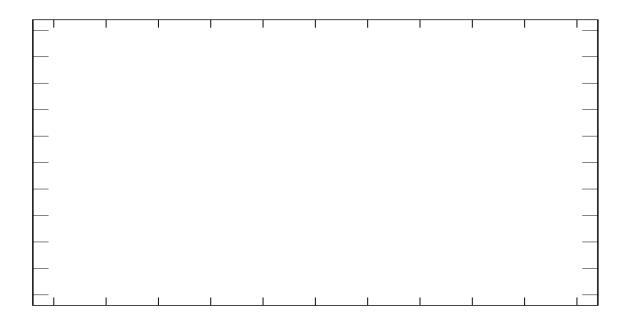


Figure 5: Graphs for Problem 1, parts b (upper panel), and g (lower panel).

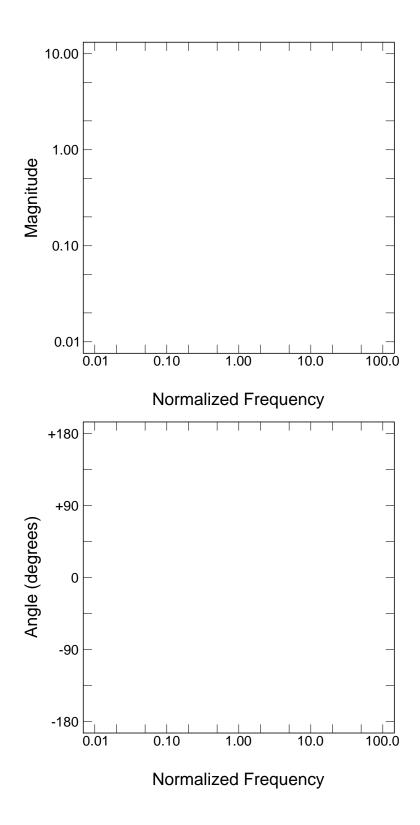


Figure 6: Graphs for Problem 4 part (e).

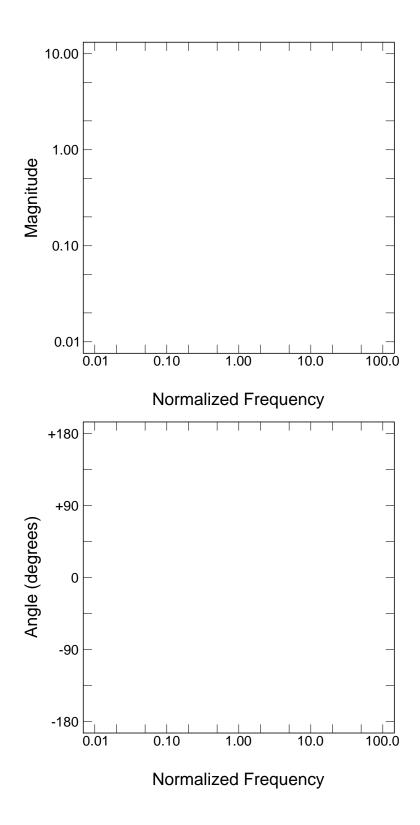


Figure 7: Graphs for Problem 4 part (e).