
7 Linear stability analysis and pattern formation

7.1 Linear stability analysis of fixed points for ODEs

Consider a particle (e.g., bacterium) moving in one-dimension with velocity v(t), governed
by the nonlinear ODE

d
v(t) = −(α+ βv2)v =: f(v). (148)

dt

We assume that the parameter β is strictly positive, but allow α to be either positive or
negative. The fixed points of Eq. (148) are, by definition, velocity values v∗ that satisfy
the condition f(v∗) = 0. For α > 0, there exists only√ one fixed points v0 = 0. For α < 0,
we find the three fixed points v0 = 0 and v± = ± −α/β. That is, the system undergoes
pitchfork bifurcation at the critical parameter value α = 0.
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To evaluate the stability of a fixed points v∗, we can linearize the nonlinear equation (148)
in the vicinity of the fixed points by considering small perturbations

v(t) = v∗ + δv(t). (149)

By inserting this perturbation ansatz into (148) and noting that, to leading order,

f(v∗ + δv) ' f(v∗) + f ′(v∗) δv = f ′(v∗) δv, (150)

we find that the growth of the perturbation δv(t) is governed by the linear ODE

d
δv(t) = f ′(v∗) δv(t), (151)

dt

which has the solution

′
δv(t) = δv(0) ef (v∗)t. (152)

If f ′(v∗) > 0, then the perturbation will grow and the fixed point is said to be linearly
unstable. whereas for f ′(v∗) < 0 the perturbation will decay implying that the fixed point
is stable.

For our specific example, we find

f ′(v0) = −α , f ′(v±) = −(α+ 3βv2
±) = 2α (153)

This means that for α > 0, the fixed point v0 = 0 is stable, indicating that the particle will
be damped to rest in this case. By√contrast, for α < 0, the fixed point v0 becomes unstable
and the new fixed points v± = ± −α/β become stable; that is, for α < 0 the particle will
be driven to a non-vanishing stationary speed. Equation (148) with α < 0 defines one of
the simplest models of active particle motion.

7.2 Stability analysis for PDEs

The above ideas can be readily extended to PDEs. To illustrate this, consider a scalar
density n(x, t) on the interval [0, L], governed by the diffusion equation

∂n

∂t
= D

∂2n
(154a)

∂x2

with reflecting boundary conditions,

∂n

∂x
(0, t) =

∂n
(L, t) = 0. (154b)

∂t

This dynamics defined by Eqs. (154) conserves the total ‘mass’∫ L

N(t) = dx n(x, t) ≡ N0, (155)
0

and a spatially homogeneous stationary solution is given by

n0 = N0/L. (156)
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To evaluate its stability, we can consider wave-like perturbations

n(x, t) = n0 + δn(x, t) , δn = ε eσt−ikx. (157)

Inserting this perturbation ansatz into (154) gives the dispersion relation

σ(k) = −Dk2 ≥ 0, (158)

signaling that n0 is a stable solution, because all modes with |k| > 0 become exponentially
damped.

7.3 Swift-Hohenberg theory of pattern formation

As a simple generalization of (154), we consider the simplest isotropic fourth-order PDE
model for a non-conserved real-valued order-parameter ψ(x, t) in two space dimensions
x = (x, y), given by

∂tψ = F (ψ) + γ ∇2ψ − γ 2 2
0 2(∇ ) ψ, (159)

where ∂t = ∂/∂t denotes the time derivative, and ∇ = (∂/∂x, ∂/∂y) is the two-dimensional
Laplacian. The force F is derived from a Landau-potental U(ψ)

∂U
F = −

∂ψ
, U(ψ) =

a

2
ψ2 +

b

3
ψ3 +

c
ψ4, (160)

4

where c > 0 to ensure stability. The appearance of higher-order spatial derivatives means
that this model accounts for longer-range effects than the diffusion equation. This becomes
immediately clear when one writes a (159) in a discretized form as necessary, for example,
when trying to solve this equation numerically on a space-time grid: second-order spatial
derivatives require information about field values at nearest neighbors, whereas fourth-order
derivatives involves field values at next-to-nearest neighbors. In this sense, higher-than-
second-order PDE models, such as the Swift-Hohenberg model (159), are more ‘nonlocal’
than the diffusion equation (154).

The field ψ could, for example, quantify local energy fluctuations, local alignment, phase
differences, or vorticity. In general, it is very challenging to derive the exact functional de-
pendence between macroscopic transport coefficients (a, b, c, γ1, γ2) and microscopic inter-
action parameters. With regard to practical applications, however, it is often sufficient to
view transport coefficients as purely phenomenological parameters that can be determined
by matching the solutions of continuum models, such as the one defined by Eqs. (159)
and (160), to experimental data. This is analogous to treating the viscosity in the clas-
sical Navier-Stokes equations as a phenomenological fit parameter. The actual predictive
strength of a continuum model lies in the fact that, once the parameter values have been
determined for a given set-up, the theory can be used to obtain predictions for how the
system should behave in different geometries or under changes of the boundary conditions
(externally imposed shear, etc.). In some cases, it may also be possible to deduce qualita-
tive parameter dependencies from physical or biological considerations. For instance, if ψ
describes vorticity or local angular momentum in an isolated ‘active’ fluid, say a bacterial
suspension, then transitions from a > 0 to a < 0 or γ0 > 0 to γ0 < 0, which both lead to
non-zero flow patterns, must be connected to the microscopic self-swimming speed v0 of the
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bacteria. Assuming a linear relation, this suggests that, to leading order, a0 = δ−αv0 where
δ > 0 is a passive damping contribution and αv0 > 0 the active part, and similarly for γ0. It
may be worthwhile to stress at this point that higher-than-second-order spatial derivatives
can also be present in passive systems, but their effects on the dynamics will usually be
small as long as γ0 > 0. If, however, physical or biological mechanisms can cause γ0 to
become negative, then higher-order damping terms, such as the γ2-term in (159), cannot
be neglected any longer as they are essential for ensuring stability at large wave-numbers,
as we shall see next.

Linear stability analysis The fixed points of (159) are determined by the zeros of the
force F (ψ), corresponding to the minima of the potential U , yielding

ψ0 = 0 (161a)

and

b
ψ± = −

2c
±
√

b2

4c2
− a

, if b2 > 4ac. (161b)
c

Linearization of (159) near ψ0 for small perturbations

δψ = ε0 exp(σ0t− ik · x) (162)

gives

σ0(k) = −(a+ γ0|k|2 + γ2|k|4). (163)

Similarly, one finds for

ψ = ψ± + ε± exp(σ±t− ik · x) (164)

the dispersion relation [ ]
σ (k) = − −(2a+ bψ ) + γ |k|2 4
± ± 0 + γ2|k| . (165)

In both cases, k-modes with σ > 0 are unstable. From Eqs. (163) and (165), we see
immediately that γ2 > 0 is required to ensure small-wavelength stability of the theory and,
furthermore, that non-trivial dynamics can be expected if a and/or γ0 take negative values.
In particular, all three fixed points can become simultaneously unstable if γ0 < 0.

Symmetry breaking In the context biological systems, the minimal model (159) is useful
for illustrating how microscopic symmetry-breaking mechanisms that affect the motion of
individual microorganisms or cells can be implemented into macroscopic field equations that
describe large collections of such cells. To demonstrate this, we interpret ψ as a vorticity-
like 2D pseudo-scalar field that quantifies local angular momentum in a dense microbial
suspension, assumed to be confined to a thin quasi-2D layer of fluid. If the confinement
mechanism is top-bottom symmetric, as for example in a thin free-standing bacterial film,
then one would expect that vortices of either handedness are equally likely. In this case,
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Figure 1: Numerical illustration of structural transitions in the order-parameter ψ for sym-
metric (a) mono-stable and (b) bi-stable potentials U(ψ) with b = 0. (c) Snapshots of the
order-parameter field ψ at t = 500, scaled by the maximum value ψm, for a mono-stable
potential U(ψ) and homogeneous random initial conditions. (b) Snapshots of the order-
parameter at t = 500 for a bi-stable potential. For γ0 � −(2π)2γ2/L

2, increasingly more
complex quasi-stationary structures arise; qualitatively similar patterns have been observed
in excited granular media and chemical reaction systems.

(159) must be invariant under ψ → −ψ, implying that U(ψ) = U(−ψ) and, therefore, b = 0
in (160). Intuitively, the transformation ψ → −ψ corresponds to a reflection of the observer
position at the midplane of the film (watching the 2D layer from above vs. watching it from
below).

The situation can be rather different, however, if we consider the dynamics of microor-
ganisms close to a liquid-solid interface, such as the motion of bacteria or sperms cells in
the vicinity of a glass slide (Fig. 2). In this case, it is known that the trajectory of a
swimming cell can exhibit a preferred handedness. For example, the bacteria Escherichia
coli and Caulobacter have been observed to swim in circles when confined near to a solid
surface. More precisely, due to an intrinsic chirality in their swimming apparatus, these
organisms move on circular orbits in clockwise (anticlockwise) direction when viewed from
inside the bulk fluid (glass surface). Qualitatively similar behavior has also been reported
for sea urchin sperm swimming close to solid surfaces.

Hence, for various types of swimming microorganisms, the presence of the near-by no-
slip boundary breaks the reflection symmetry, ψ 6→ −ψ. The simplest way of accounting for
this in a macroscopic continuum model is to adapt the potential U(ψ) by permitting values
b 6= 0 in (160). The result of a simulation with b > 0 is shown in Fig. 2a. In contrast to
the symmetric case b = 0 (compare Fig. 1c), an asymmetric potential favors the formation
of stable hexagonal patterns (Fig. 2a) – such self-assembled hexagonal vortex lattices have
indeed been observed experimentally for highly concentrated spermatozoa of sea urchins
(Strongylocentrotus droebachiensis) near a glass surface (Fig. 2b).
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Figure 2: Effect of symmetry-breaking in the Swift-Hohenberg model. (a) Stationary hexag-
onal lattice of the pseudo-scalar angular momentum order-parameter ψ, scaled by the maxi-
mum value ψm, as obtained in simulationsof Eqs. (159) and (160) with b > 0, corresponding
to a broken reflection symmetry ψ 6→ −ψ. Blue regions correspond to clockwise motions.
(b) Hexagonal vortex lattice formed spermatozoa of sea urchins (Strongylocentrotus droe-
bachiensis) near a glass surface. At high densities, the spermatozoa assemble into vortices
that rotate in clockwise direction (inset) when viewed from the bulk fluid.

7.4 Reaction-diffusion (RD) systems

RD systems provide another generic way of modeling structure formation in chemical and
biological systems. The idea that RD processes could be responsible for morphogenesis goes
back to a 1952 paper by Alan Turing (see class slides), and it seems fair to say that this
paper is the most important one ever written in mathematical biology.

RD system can represented in the form

∂tq(t,x) = D∇2q +R(q), (166)

where

• q(t,x) as an n-dimensional vector field describing the concentrations of n chemical
substances, species etc.

• D is a diagonal n× n-diffusion matrix, and

• the n-dimensional vector R(q) accounts for all local reactions.
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7.4.1 Two species in one space dimension

As a specific example, let us consider q(t,x) = (u(t, x), v(t, x)), D = diag(Du, Dv) and
R = (F (u, v), G(u, v)), then

ut = Duuxx + F (u, v) (167a)

vt = Dvvxx +G(u, v) (167b)

In general, (F,G) can be derived from the reaction/reproduction kinetics, and conservation
laws may impose restrictions on permissible functions (F,G). The fixed points (u∗, v∗)
of (167) are determined by the condition( )

F (u∗, v∗)R(u∗, v∗) = = 0. (168)
G(u∗, v∗)

Expanding (167) for small plane-wave perturbations( ) ( )
u(t, x) u∗= + ε(t, x) (169a)
v(t, x) v∗

with ( )
ε = ε̂ eσt−ikx

ε̂
= eσt−ikx, (169b)

η̂

we find the linear equation( ) ( )
k2Du 0 F ∗

σε̂ = − ε̂+ u F ∗v
0 k2Dv G∗u G∗

ε̂ ≡M ε̂, (170)
v

where

F ∗u = ∂uF (u∗, v∗) , F ∗v = ∂ ∗
vF (u∗, v∗) , Gu = ∂uG(u∗, v∗) , G∗v = ∂vG(u∗, v∗).

Solving this eigenvalue equation for σ, we obtain

1
σ± =

2

{
−(Du +Dv)k

2 + (F ∗u +G∗v)±
√ }

24F ∗vG
∗
u + [F ∗u −G∗v + (Dv −Du)k2] . (171)

In order to have an instability for some finite value k, at least one of the two eigenvalues
must have a positive real part. This criterion can be easily tested for a given reaction
kinetics (F,G). We still consider a popular example.

7.4.2 Lotka-Volterra model

This model describes a simple predator-prey dynamics, defined by

F (u, v) = Au−Buv, (172a)

G(u, v) = −Cv + Euv (172b)
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with positive rate parameters A,B,C,E > 0. The field u(t, x) measures the concentration
of prey and v(t, x) that of the predators. The model has two fixed points

(u0, v0) = (0, 0) , (u∗, v∗) = (C/E,A/B), (173)

with Jacobians ( ) ( )
Fu(u0, v0) Fv(u0, v0) A 0

= (174a)
Gu(u0, v0) Gv(u0, v0) 0 −C

and ( ) (
Fu(u , v∗) Fv(u∗, v∗)

C
∗ A− B

=
Gu(u∗, v∗) Gv(u∗, v∗)

E −A
C −C + AE

)
. (174b)

B

It is straightforward to verify that, for suitable choices of A,B,C,D, the model exhibits a
range of unstable k-modes.
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