
Assignment 4 

Released: Friday, 5 April, at 5 PM. 

Due: Friday, 19 April, at 5 PM. 

Upload your solution   as a zip file “YOURNAME_ASSIGNMENT_4” which includes for each question
 the AxQy script as well as any Matlab functions (of your own creation) which are called by your
 script. Note the Matlab functions of your own creation may include both specific Mat-lab 
functions requested in the question statement but also any other Matlab functions (called 
directly or indirectly by your script or by other functions) which you choose to develop as part of 
your answer. Both the scripts and (requested) functions must conform to the formats described in 
Instructions and Questions below. You should also include in your folder all the grade_o_matic 
.p files for Assignment 4. 

Instructions 

Before embarking on this assignment you should 

(1) Complete the Textbook reading for Unit IV and review the Lecture Notes for Unit IV

 
(2) Execute (“cell-by-cell”) the two Matlab Tutorials for Unit IV Passing Functions (Handles),

 Anonymous Functions, and Matlab ode45; Matlab eig. (Note Chapter 6, in  particular  
Sections 6.5 and 6.6, also addresses relevant Matlab issues.) 

(3) Download      the Assignment_4_Materials folder. This folder contains a template for
 

the
 script associated with each question (A4Qy_Template for Question y), as well as a template 
for each function which we ask you to create (func_Template for a function func).

 
The

 Assignment_4_Materials folder also contains the grade_o_matic codes needed for 
Assignment 4. (Please see Assignment 1 for a description of grade_o_matic.) 

We indicate here several general format and performance requirements: 

(a.) Your script for Question y of Assignment x must be a proper Matlab “.m” script file and 
must be named AxQy.m. In some cases the script will be trivial and you may submit the 
template “as is” — just remove the _Template — in your “YOURNAME_ASSIGNMENT_4” 
folder. But note that you still must submit a proper AxQy.m script or grade_o_matic_A4 
will not perform correctly. 

(b.) In this assignment, for each question y, we will specify inputs and outputs both for 
the script A4Qy and (as is more traditional) any requested Matlab functions; we shall 
denote the former as script inputs and script outputs and the latter as function inputs 
and function outputs. For each question and hence each script, and also each function, 
we will identify allowable instances for the inputs — the parameter values or “parameter 
domains” for which the codes must work. 

(c.) Recall that for scripts, input variables must be assigned outside your script (of course 
before the script is executed) — not inside your script — in the workspace; all other 
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variables required by the script must be defined inside the script. Hence you should test 
your scripts in the following fashion: clear the workspace; assign the input variables 
in the workspace; run your script. Note to test your Matlab functions you need not 
take such precautions: all inputs and outputs are passed through the input and output 
argument lists; a function enjoys a private workspace. 

(d.) We ask that you not end any of your script names or function names with the suf
fix _ref in order to prevent conflicts with scripts or functions provided in the folder 
Assignment_4_Materials (and needed by grade_o_matic_A4). 

(e.) We ask that in the submitted version of your scripts and functions you suppress all 
display by placing a “;” at the end of each line of code. (Of course during debugging 
you will often choose to display many intermediate and final results.) We also require 
that before you upload your solution   you should run grade_o_matic_A4 (from your 
YOURNAME_ASSIGNMENT_4 folder) for final confirmation that all is in order. 

· 

Testing: Manufactured Solutions 

In the course thus far it was fairly easy to develop test cases for your codes. In particular, it 
was often simple to identify instances for which the solution is known; you could then test your 
implementation relative to this solution. In Unit IV and beyond we will increasingly encounter 
problems for which it is difficult to develop instances for which the (exact) solution is known. 

For example, consider a linear ODE IVP of the form 

dw 
= Aw + F (t) , 0 ≤ t ≤ tf , (1)

dt 
subject to initial conditions w(0) = w0. Here w may be a scalar or more generally an n × 1 state 
vector; A is an n × n (time-independent) matrix and F is an n × 1 (time-dependent) vector. (We 
can also directly extend the “manufactured solutions” framework to nonlinear problems — and 
indeed it is for nonlinear problems that the framework is most useful.) We might develop (say) 
a “home-grown” Euler Backward scheme for approximation of this equation (as in Question 1 
below), or perhaps we might apply the Matlab ode45 function based on a RK4 approximation of 
this equation (as in Question 2 below). In either case we would like to test the implementation. 
We should certainly look for w0 or F for which we can develop a simple expression for the exact 
solution w(t). But in general this might not be possible or perhaps these exact solutions will be 
too simple to test all aspects of the code. 

It is thus often useful to also pursue the method of “Manufactured Solutions”: you start with 
an assumed solution — some prescribed relatively simple expression w(t); you then insert this 
assumed answer w(t) into (1) to find the question — the w0 and in particular the F (t) — which 
yields the chosen w(t); finally, you now test your code for this w0 and F (t) to ascertain that the 
Euler Backward approximation approaches w(t) — which, by construction, you know! — at the 
correct rate as (say) J , the number of timesteps, increases (for fixed tf ). Note it is not sufficient to 
obtain an answer which is “close”: it is important to test convergence, and even convergence rate, 
in order to flush out certain kinds of errors. We emphasize that we do not modify A as in some 
sense it is the implementation of A that we wish to confirm. 

Finally, it is important to note that the method of Manufactured Solutions only confirms (at 
best) that the code implements the desired numerical scheme for the given “dynamics” A. In par

2  



⎧ ⎪⎪⎨ ⎪⎪⎩  

ticular, it does not tell you for some particular “non-manufactured” w0 and F of interest whether 
for a given J your numerical solution w̃(t) is sufficiently close to the exact solution w(t). For that 
purpose you must use your insight, as well as quantitative measures informed by a priori and a 
posteriori error estimates. 

Questions 

1. (25 points) We consider here the scalar ODE IVP 

du 
= λu + f(t), 0 < t ≤ tf

dt , (2) 
u(t = 0) = u0 

for λ ≤ 0. We recall that this equation is the lumped model for the temperature evolution of 
a body: u is the temperature (measured relative to ambient temperature), in ◦C; u0 is the 
initial temperature (measured relative to ambient temperature), in ◦C; λ is the (negative of 
the) heat transfer coefficient times the area of the body divided by the specific heat times 
the mass of the body, in units of s−1 (−λ is hence an inverse time constant of our first-order 
system); and f(t) is the heat generation (in Watts) divided by the specific heat times the 
mass of the body, in units of ◦Cs−1 . We note that λ is negative. 

jThe Euler Backward discretization of (2) will yield an approximate solution ũ = ũ(j Δt)(≈ 
u(j Δt)), 0 ≤ j ≤ J, for Δt = tf /J . In this question we would like you to implement the 
Euler Backward method in a Matlab function with signature 

function [u_vec] = Euler_Backward(u_0,lambda,f_source,t_final,J) 

in order to obtain the approximate temperature history of the body, u_vec(j) = ũ((j-1) Δt), 
1 ≤ j ≤ J+1, for prescribed initial condition u_0, parameter lambda, “source” function 
f_source, and final time t_final (= tf ). Recall that the function “signature” refers to the 
function name and the input and output lists. 
The function must be named Euler_Backward and furthermore must be stored in a file 
named Euler_Backward.m. The function takes five function inputs. The first input is the 
scalar u_0 which corresponds to the initial condition u0 in (2); the set of allowable instances, 
or parameter domain, is not restricted (any finite value is admissible). The second input is 
the scalar lambda which corresponds to λ in (2); the set of allowable instances, or parameter 
domain, is the negative real numbers. The third input is the Matlab function f_source 
which “implements” in Matlab the source function f(t) in (2); the function f_source should 
have signature template function [f_val] = f_source(time) where the input to function 
f_source is the scalar time and the output from function f_source is the scalar f_val such 
that f_val = f(time).1 The fourth input is the scalar t_final which corresponds to the 
final time tf in (2); the set of allowable instances, or parameter domain, is the positive real 
numbers (since our initial time here is, for simplicity, fixed as zero). The fifth input is the 

1Note we prefer to include f_source as an argument to Euler_Backward rather than “hardwire” the source function 
inside Euler_Backward so that we do not need to re-write, re-debug, and re-test a new Euler Backward code for each 
new desired source function f(t) — re-use is one of the great strengths, along with modularity and locality, of the 
“function” concept in programming languages. 
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scalar J which corresponds to J as defined in the Euler Backward discretization; the set of 
allowable instances, or parameter domain, is the positive integers. (Note that Δt is not an 
input but rather should be calculated (within your function Euler_Backward) as Δt ≡ tf /J .) 
The function yields a single function output: the output is the J+1 × 1 vector u_vec which 

2corresponds to ũ(j Δt), 0 ≤ j ≤ J . 

The script for this question is provided in A4Q1_Template.m; you should just remove the 
_Template but you should not modify the body of the script in any way or grade_o_matic_A4 
will be very unhappy and you will receive no credit, and furthermore for this particular 
question you should not even run the script A4Q1 — rather, you should directly test your 
Euler_Backward code as described in “Guidelines and Hints” below. We also provide a 
template for the Euler Backward code, Euler_Backward_Template. Note the only deliv
erables for this problem are your script A4Q1 and your Euler_Backward function. In par
ticular, any “f_source” functions (see Guidelines and Hints below) which you create to 
test your Euler_Backward code are for your own purposes and should not be uploaded in 
YOURNAME_ASSIGNMENT_4; grade_o_matic will create its own instances (unknown to you) of 
“f_source” with which to test your Euler_Backward code. 

Guidelines and Hints. We recall that the particular names chosen for the inputs and 
outputs in the function signature/body of a function is not important: it is only the number 
and order of the inputs and outputs which matters to ensure correct instantiation of the 
function inputs, and correct assignment of the function outputs, when the function is called 
by another program.3 (In contrast, in a script, which does not have a private workspace, the 
specific names of the variables are important.) In particular, we know that the names of the 
variables in the argument list of the function call need not be in any way related to the names 
of the “dummy” variables inside the function definition. 

This concept also applies to inputs which are function (handles): there is thus no reason 
why the name of the function which implements f(t) and which will appear in the ar
gument list of the call to Euler_Backward should be the same as the name of the sec
ond “dummy” argument in the Euler_Backward definition — and indeed, this would be 
very cumbersome. Instead, you may create several different Matlab functions, say f_1 
and f_2, which implement different sources f(t), say f(t) ≡ f1(t) ≡ sin(t) and f(t) ≡ 
f2(t) ≡ t, respectively, and then call Euler_Backward(u_0,lambda,@f_1,t_final,J) and 
Euler_Backward(u_0,lambda,@f_2,t_final,J), respectively, to obtain the corresponding 
numerical solutions. We thus recognize that the signature we provided earlier for f_source 
is more properly viewed as a signature template which indicates the input and output lists 
and desired functionality: you are free to choose any names for the inputs and outputs and 
indeed the function name.4 Note you may also find it very convenient for simple source 
terms to call the Euler Backward code with anonymous or “in-line” functions, for example 
Euler_Backward(u_0,lambda,@(t)t,t_final,J); this anonymous function shares the sig
nature template of f_source except that no output name is required as there is perforce 

2Note it may be helpful for debugging purposes to plot your solution; this may be effected as 
plot(linspace(0,t_final,J+1)',[u_vec]). 

3In fact, more advanced Matlab argument handling procedures even permit flexibility in the number and order 
of inputs and outputs: the call to the function selectively instantiates certain inputs (with others set to defaults) and 
selectively chooses certain outputs. 

4Often the function name may be prescribed by the “client,” which for you is effectively grade_o_matic; but 
for this particular question grade_o_matic will call Euler_Backward with its own source functions and associated 
Matlab implementations. 
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a single output (and indeed even a function name is optional if the anonymous function is 
defined directly in the call to Euler_Backward). 

Challenge 1. This challenge relates to Question 1. Develop an a posteriori estimate for the 
error |u(tf ) − ũ(tf )| — which of course should not require knowledge of the exact solution. 
Keywords (from the textbook, Unit I and Unit IV, and the Unit IV Lecture Notes): trun
cation error and discretization error; Euler Backward; a priori error bound; finite difference 
approximation to second derivative. (Note in practice these concepts are often taken further: 
the development of adaptive schemes which decrease or increase the timestep as the integra
tion proceeds in order to achieve, but not over-achieve, a given error tolerance.) 

⎧ ⎪⎪⎪⎨ ⎪⎪⎪⎩  

Figure 1: Particle in a stagnation flowfield. 

2. (25 points) A small spherical particle immersed in fluid stream approaches (from the left) a 
wall at x = 0. As a first approximation, the governing equation for the position (in x) of the 
particle as a function of time, X(t), is 

d2X dX 
+ b + bαX = 0, 0 < t ≤ tf

dt2 dt 
, (3) 

dX 
X(0) = −L, (0) = V 

dt 
where b is related to the Stokes (low-Reynolds number) drag force on the particle (divided by 
the mass of particle) and has units s−1 , α is related to the gradient of the flow in the vicinity 
of the wall (divided by the mass of the particle) and also has units s−1, and finally −L (in 
m) and V (in m/s) are the initial position and initial velocity of the particle. (We neglect 
gravitational effects.) 
We note that (3) assumes the fluid flow takes the form −αx for x a coordinate normal to and 
decreasing away from the wall: this represents a stagnation flow along a line of symmetry (for 
example, if x = 0 corresponds to the stagnation point at the “nose” of a bluff body); we depict 
the situation in Figure 1. The solution is only relevant for times t such that X(t) ≤ 0 — 
before (if) the particle reaches the wall — however you may continue the calculation beyond 
contact and then inspect the solution to detect the time at which the particle (first) collides 
with the wall.5 This simple model (typically extended to two or three spatial dimensions) is 
relevant in many industrial processes such as particle separation. 

5Note in fact our problem has another interpretation: we again consider a stagnation flow but now view x as the 
coordinate along the wall such that the stagnation point x = 0 is a particle “trap”; in this case the particle will 
oscillate about and gradually approach x = 0. In this case the solution is relevant both for x negative and x positive. 
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We denote our state variable as w ≡ (w1 w2)
T for w1 ≡ X and w2 ≡ dX It is then possibledt . 

to express (3) as ⎧ ⎪⎪⎪⎨ 
dw1 

dt 
= g1(t, w, b, α) 

, 0 ≤ t ≤ tf , (4)⎪⎪⎪⎩ dw2 

dt 
= g2(t, w, b, α) 

or even more succinctly as 

dw 
= g(t, w, b, α) , 0 ≤ t ≤ tf , (5)

dt 

where g(t, w, b, α) ≡ (g1(t, w, b, α) g2(t, w, b, α))T . You will need to derive the form of 
g(t, w, b, α) from (3). We provide w with the initial conditions prescribed in the problem 
statement, 

w(t = 0) ≡ w0 = (−L V )T . (6) 

We would like you to write a script which solves (approximately) (5) with the Matlab 
function ode45. 

The script takes six script inputs. The first script input is the scalar damping coefficient b 
which must correspond in your script to Matlab variable b; the set of allowable instances, 
or parameter domain, is 0.01 ≤ b ≤ 100. The second script input is the scalar velocity 
parameter α which must correspond in your script to Matlab variable alpha; the set of 
allowable instances, or parameter domain, is 0 ≤ α ≤ 1. The third input is the scalar initial 
velocity of the particle V which must correspond in your script to Matlab variable V; the 
set of allowable instances, or parameter domain, is 0 ≤ V ≤ 1.0. The fourth input is the 
scalar (negative of the) initial position of the particle L which must correspond in your script 
to Matlab variable L; the set of allowable instances, or parameter domain, is 0.1 ≤ L ≤ 1.0. 
The fifth input is the scalar final time tf which must correspond in your script to Matlab 
variable t_final; the set of allowable instances, or parameter domain, is 0.1 ≤ tf ≤ 60. The 
sixth input is the error tolerance for the ode45 integrator which must correspond in your 
script to the scalar max_err_tol; the set of allowable instances, or parameter domain, is 
1e-8 ≤ max_err_tol ≤ 1e-4. The script yields two script outputs. The first script output 
is the ode45 approximation to X(tf ) — the position of the particle at the final time (even if 
this position corresponds to positive x and hence beyond the wall) — which must correspond 
in your script to the scalar X_at_t_final. The second script output is twall — the time at 
which the particle contacts the wall — which must correspond in your script to the scalar 
t_wall; note if the particle does not reach the wall by tf then your script should set t_wall 

6to -1. 

A template for the script for this question is provided in A4Q2_Template. For this question 
you must upload both your script A4Q2 and your function g_dyn_Q2 (see Guidelines and Hints 
below) in your YOURNAME_ASSIGNMENT_4 folder. 

Guidelines and Hints. The Matlab ode45 code (which you will call from within your 
script A4Q2) will require, in addition to the six script inputs to A4Q2 described above, a Mat-
lab anonymous function @(t,w) which implements the “dynamics” g(t, w, b, α) of (5) (which 

˜6To calculate twall (in the case of contact) we ask that you find the smallest index j such that X(tj ) ≥ 0 and then 
j j˜set twall = t ; here X(t ) is the ode45 prediction for the displacement. 
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you must derive) for the given script inputs b and α; the signature template for this (anony
mous) function is described in the ode45 documentation. For this simple problem you could 
in fact define this anonymous function directly, however we ask that you follow the approach 
required more generally for more complicated problems: you first create a standard Mat-
lab function g_dyn_Q2(t,w,b,alpha) which implements g(t, w, b, α); you then in (the input 
list of) your call to ode45 create the anonymous function @(t,w)g_dyn_Q2(t,w,b,alpha) 
which has the signature template demanded by ode45. (You can not simply call ode45 with 
g_dyn_Q2 as then b and alpha will not be specified.) Note you may in principle choose any 
name for this dynamics function; we ask you to call the function g_dyn_Q2, and we provide 
a template in Assignment_4_Materials. Recall you are required to include your g_dyn_Q2 
function in your YOURNAME_ASSIGNMENT_4 submission (as when grade_o_matic_A4 runs your 
script A4Q2 your call to ode45 will involve your g_dyn_Q2 function — grade_o_matic_A4 will 
not provide the g_dyn_Q2 function). 

Challenge 2. This challenge relates to Question 2. You will find that your script A4Q2 is 
quite slow for b/α and btf very large — and slower and slower as b/α and btf get larger and 
larger. Identify the cause of this difficulty and propose and implement a numerical scheme 
which addresses the issue: an alternative to explicit high-order Runge-Kutta (the method 
implemented in ode45) which, for the same accuracy, requires much less computation time. 
Keywords (in the textbook, Unit IV): stiff equations; absolute stability diagrams; explicit 
Runge-Kutta; implicit methods; overdamped oscillator. 

3. (15 points) We now reconsider the problem of Question 2 but rather than a low-Reynolds 
number Stokes approximation for the drag on the particle we instead consider a high-Reynolds 
number (bluff-body) approximation for the drag. The governing equation for X(t) is then ⎧ ⎪⎪⎪⎨  

         dX  
dt  

+ αX 
     = 0,  0 < t ≤ tf 

d2X dX  
+ b + αX 

dt2 dt  
, (7) 

dX 
X(0) = −L, (0) = V 

dt 

⎪⎪⎪⎩  

where b — related to the high-Reynolds number drag force (divided by the mass of the 
particle) — now has units of m−1 . This equation is of course now nonlinear . 
We would like you to repeat Question 2 but now consider this nonlinear model. We em
phasize that all the allowable instances, deliverables, and Guidelines and Hints from Ques
tion 2 should be directly transferred here to Question 3. The “only” change will be to the 
g(t, w, b, α) which you should implement in Matlab as g_dyn_Q3 (we provide a template in 
Assignment_4_Materials). In actual practice, you need only construct g_dyn_Q3 and then 
modify very slightly your script A4Q2 — a small change to the ode45 call — to obtain your 
new script A4Q3 (for this reason we leave A4Q3_Template.m blank). You must upload both 
your script A4Q3 and your function g_dyn_Q3 in your YOURNAME_ASSIGNMENT_4 folder. 

Challenge 3. This challenge relates to Question 3. Derive an expression for the exact 
solution to (7) for the particular case in which α = 0 and compare your exact solution to the 
ode45 approximation obtained in Question 3. 

4. (25 points) In this question we shall consider the stability of a spinning parallelepiped (or 
“book” for short). We show in Figure 2 our book with semi-axes a, b, and c and principal 
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Figure 2: Book Geometry 

moments of inertia I1, I2, and I3 in respectively the e1, e2, and e3 directions. In general, the 
principal moments of inertia are related to the dimensions of the book by 

1 
I1 = 

3
(a 2 + b2)M 

I2 = 
1 
3
(a 2 + c 2)M (8) 

I3 = 
1 
(b2 + c 2)M , 

3

where M is the mass of the book. We shall presume that in general a < b < c such that 
I1 < I2 < I3. We shall consider the particular case in which a = 1 cm, b = 10 cm, c = 15 cm, 
and M = 55 g (in terms of which we can then calculate I1, I2, and I3, in units of g-cm2). 

Euler’s equations (in the book frame) for torque-free motion are given by 

dω1
I1 = −ω2ω3(I3 − I2)

dt 

dω2
I2 = −ω3ω1(I1 − I3) (9)

dt 

dω3
I3 = −ω1ω2(I2 − I1) ,

dt 

where ω = ω1e1 + ω2e2 + ω3e3 is the angular velocity vector in the book frame. (Hence, for 
example, ω1 represents the rotation about the e1 axis.) 

Assume now that we are given a time-independent, or equilibrium, solution to (9), ω. We 
recall the process by which we determine the stability of this steady solution: we write 
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ω(t) = ω + ω/(t); we insert our expression for ω(t) into (9) and neglect all products of (the 
assumed small) “prime” terms7 to arrive at the linearized equations 

dω/
B = Aω/(t) (10)

dt 

for the 3 × 1 vector ω/ (note that A and B are both 3 × 3 matrices); we assume temporal 
behavior of the form ω/(t) = veλt to arrive at the eigenvalue problem 

Av = λBv (11) 

for eigenvalue λ and (3×1) eigenvector v (there will be three eigenvalues and three associated 
eigenvectors); we solve our eigenproblem (11) with a call to Matlab built-in function eig8; 
and finally, we interpret λ to assess stability. 

As regards the stability interpretation, we recall that if the real part of any of the three 
eigenvalues λ is positive then the system is unstable — the amplitude of ω/(t) is exponentially 
growing in time — and will rapidly depart from the equilibrium solution ω. On the other 
hand, if the real part of all three eigenvalues λ is negative, then the steady solution is stable 
and will persist. The neutral or marginal case — in which the real part of the eigenvalue λ with 
largest real part is zero — would require further attention to better understand dissipation 
and also possibly higher-order corrections.9 

We would like you to write a script which calculates the three eigenvalues λ and renders a 
stability verdict — stable, marginally stable, or unstable — for each of the three equilibrium 
solutions: ω1 ≡ (1 0 0)T (rotation about the principal direction e1, which has the smallest 
moment of inertia); ω2 ≡ (0 1 0)T (rotation about the principal direction e2, which has the 
intermediate moment of inertia); and ω3 ≡ (0 0 1)T (rotation about the principal direction e3, 
which has the largest moment of inertia). (It is simple to deduce that each of these equilibria 
is indeed a time-independent solution of (9).) We are also interested, for each equilibrium, 
in F , the imaginary part of the eigenvalue λ with largest imaginary part; F is related to the 
frequency of oscillations about the equilibrium. (Note that F is a real number — the real √ 
number which multiplies i ≡ −1 in λ.)  

As a first step you will need to perform the requisite linearizations of (9) to deduce the  
matrices A and B of (10) and (11) — note that A and B are different for each of the three  
equilibrium solutions. We would also invite you as an electively final step to confirm your  
stability conclusions (or in the case of marginal stability, resolve your stability quandary)  
based on experiments with the official soft-matter “2.086 book” with the particular moments  
of inertia given above.  

Your script will take no script inputs (you should assign the indicated moments of inertia,  
in units of g-cm2, within your script). The script should yield six script outputs. The first  
output is a scalar F1 which corresponds to F (defined above) associated with the first equilib
rium ω1 and which must correspond in your script to Matlab variable lam_imag_max_1; the  
second output is an integer stability_equi_1 which is −1 if this first equilibrium (based  

7Note by definition of an equilibrium, the products of “bar” terms will also vanish; we consider particular equilibria 
below. 

8Note that (11) is a generalized eigenproblem and hence you will need to call eig with two arguments, eig(A,B). 
9For our problem here, the addition of drag terms to our lossless model (9) would most likely shift eigenvalues to 

the left in the complex plane and thus “stabilize” a marginally stable equilibrium. However, you should not make 
this presumption in your analysis. 
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on the linear stability analysis) is stable, 0 if this equilibrium is marginally stable, or 1 if 
this equilibrium is unstable, and which must correspond in your script to Matlab variable 
stability_equi_1. The third output is a scalar F2 which corresponds to F (defined above) 
associated with the second equilibrium ω2 and which must correspond in your script to Mat-
lab variable lam_imag_max_2; the fourth output is an integer stability_equi_2 which is 
−1 if this second equilibrium (based on the linear stability analysis) is stable, 0 if this equi
librium is marginally stable, or 1 if this equilibrium is unstable, and which must correspond 
in your script to Matlab variable stability_equi_2. Finally, the fifth output is a scalar 
F3 which corresponds to F (defined above) associated with the third equilibrium ω3 and 
which must correspond in your script to Matlab variable lam_imag_max_3; the sixth output 
is an integer stability_equi_3 which is −1 if this third equilibrium (based on the linear 
stability analysis) is stable, 0 if this equilibrium is marginally stable, or 1 if this equilibrium is 
unstable, and which must correspond in your script to Matlab variable stability_equi_3. 

A template for the script for this question is provided in A4Q4_Template. 

5. (10 points) This question relates to Question 1 for the particular case in which we take 
σt λ = −0.1, f(t) ≡ e for σ = 2, tf = 2, and u0 = 1. We ask that you deduce the answers 

from theoretical considerations but of course we also encourage you to then corroborate and 
confirm your conclusions with your script of Question 1. 

(i) (2.5 points) The exact solution is given by 

σt − 1e
(a) u(t) = + e λt 

σ  
σt − eλt e

(b) u(t) = + e λt 
σ − λ 
σt e

(c) u(t) = 
σ 
σt e

(d) u(t) = + e λt 
σ − λ 

(ii) (5 points) The a priori bound for the error |u(tf ) − ũ(JΔt)| suggests that in order to 
obtain an error of roughly 0.01 the timestep Δt should be chosen as 

(a) 1.2 × 10−8 

(b) 1.9 × 10−4 

(c) 5.4 × 10−2 

(d) 0.2 

(Note since the a priori estimate is an upper bound for the error, the Δt predicted 
by the theory will in fact be conservative — a bit too small. You can confirm this 
claim empirically — with your code — if you wish.) 
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(ii) (2.5 points) As J → ∞ the error |u(tf ) − ũ(JΔt)| will 

(a) tend to infinity 

(b) asymptote to a constant 

(c) decrease as 1/J 

(d) decrease as 1/J2 

The template A4Q5_Template.m contains the multiple-choice format required by grade_o_matic_A4. 
Please make sure to use lower-case letters for your multiple-choice selections. 
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