
Assignment 6 2.086/2.090 Spring 2013  

Released: Friday, 3 May, at 5 PM. 

Due: Thursday, 16 May, at 5 PM. 

Upload your solution   as a zip file “YOURNAME_ASSIGNMENT_6” which includes for each question
 the AxQy script as well as any Matlab functions of your own creation. Note the Matlab functions
 of your own creation should include both specific Matlab functions requested in the question 
statement as well as any other Matlab functions (called directly or indirectly by your other

 functions) which you choose to develop as part of your answer. Both  the  scripts  and  (requested)
 functions must conform to the formats described in Instructions and Questions below. You 
should also include in your folder all the grade_o_matic .p files for Assignment 6. 

Instructions 

Before embarking on this assignment you should 

(1) Complete the Textbook reading for Unit VII and review the Lecture Notes for Unit VII 
 

(2) Execute (“cell-by-cell”) the Matlab Tutorial for Unit VII    Mat- lab fsolve. Note that in
 fact fsolve is only needed for the “Reverse” Challenge at the  conclusion of assignment 
— which is (ungraded and hence) entirely elective on your part. 

(3) Download     the Assignment_6_Materials folder. This folder contains the script for  each 
question (A6Qy.p for Question y), as well as a template for each function which we ask

 you to create (func_Template for a function func). The Assignment_6_Materials
 folder also contains the grade_o_matic codes needed for Assignment 6. (Please see 
Assignment 1 for a description of grade_o_matic.) 
We indicate here several general format and performance requirements: 

(a.) Your script for Question y of Assignment x must be the provided A6Qy.p: for Assign
ment 6, no modifications are needed to these scripts, and you should upload these scripts 
directly “as is” in your YOURNAME_ASSIGNMENT_6 folder. (Note that although no modifi
cations are required, you must upload the A6Qy.p scripts or grade_o_matic_A6 will not 
perform correctly.) 

(b.) In this assignment, for each question y, we will specify inputs and outputs both for 
the script A6Qy and (as is more traditional) any requested Matlab functions; we shall 
denote the former as script inputs and script outputs and the latter as function inputs 
and function outputs. For each question and hence each script, and also each function, we 
will identify allowable instances for the inputs — the parameter values or “parameter 
domains” for which the codes must work. In fact, for Assignment 6, there are only 
function inputs and outputs — there are no script inputs or outputs. 

(c.) We ask that you not end any of your script names or function names with the suf
fix _ref in order to prevent conflicts with scripts or functions provided in the folder 
Assignment_6_Materials (and needed by grade_o_matic_A6). 
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(d.) We ask that in the submitted version of your scripts and functions you suppress all 
display by placing a “;” at the end of each line of code. (Of course, during debugging 
you will often choose to display many intermediate and final results.) We also require 
that before you upload your solution   you should run grade_o_matic_A6 (from your 
YOURNAME_ASSIGNMENT_6 folder) for final confirmation that all is in order. 

· 

Preamble 

The robot arm of Figure 1 is represented schematically in Figure 2. Note that although the 
robot of Figure 1 has three degrees-of-freedom (“shoulder,” “elbow,” and “waist”), we will consider 
only two degrees-of-freedom — “shoulder” and “elbow” — in this assignment. 

Figure 1: Robot arm.
Figure 2: Schematic of robot arm: end effector 
X = (X1 X2)

T and joint angles Q = (Q1 Q2)
T . 

The geometry of the robot arm imposes a relationship between the end effector location X =
(X1 X2)

T and the joint angles Q = (Q1 Q2)
T:    

X1 L1 cos(Q1) + L2 cos(Q1 + Q2) 
= , (1)

X2 L1 sin(Q1) + L2 sin(Q1 + Q2)

where L1 and L2 are the lengths of the first and second arm links, respectively. For our robot,
L1 = 4 inches and L2 = 3.025 inches. (Our robot is British.) Note that throughout this assignment
we shall assume (and impose), without any loss of generality, that 0 ≤ Q1 < 2π and 0 ≤ Q2 < 2π.

In this assignment we are interested in the inverse kinematics of the robot arm: for given end
effector position X (in units of inches), we wish to find the robot joint angles QX (in units of
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    radians) which will realize X. Towards that end, we introduce the function  

f robot L1 cos(q1) + L2 cos(q1 + q2) − X11
f robot(q; X) ≡ = . (2) 

f robot L1 sin(q1) + L2 sin(q1 + q2) − X22 

We note that f robot is a 2 × 1 vector which depends on the joint angles q = (q1 q2)
T — for 

0 ≤ q1 < 2π, 0 ≤ q2 < 2π — and the desired end effector location X. It follows from Equations (1) 
and (2) that, for given end effector position X, the joint angles QX must satisfy 

f robot(QX ; X) = 0 . (3) 

(In Equation (2) q is a dummy variable which refers to any joint angles we may wish to consider; 
in contrast, QX refers to a solution, for given X, of f robot(QX ; X) = 0.) 

We should note that f robot in fact has two interpretations, both of which should prove useful in 
this assignment. First, f robot(Q; (0 0)T) is, from Equations (1) and (2), the end effector location 
XQ for joint angles Q; this (“forward kinematics”) interpretation will be important in the devel
opment of test cases and first guesses for the inverse kinematics problem, Equation (3). Second, for 
given q and X, f robot(q; X) is the extent to which the joint angle–end effector relation (Equation 
(1)) is not satisfied for some proposed joint angle q and end effector position X; this “residual” in
terpretation will be important in the iterative solution of the inverse kinematics problem, Equation 
(3). 

In fact, our problem statement is not yet complete: we must include one more feature of the 
actual robot arm. In particular, the joint actuation is limited: the joint angles Q (and hence also 
QX ) must satisfy the condition 

0 ≤ Q1 ≤ π ; 0 ≤ Q2 ≤ π . (4) 

In many cases Equation (3) will have two solutions — corresponding to two “branches” — and 
we must make sure to only accept a root which satisfies the constraint Equation (4). Note that, 
unlike our reference requirement 0 ≤ Q1 < 2π, 0 ≤ Q2 < 2π, the condition of Equation (4) is a real 
restriction on the locations which may be reached by the end effector. The latter is referred to as 
the robot workspace, which we can define more precisely (from our first interpretation of f robot) as 
the set of all X such that X = f robot(Q; (0 0)T) for some joint angle Q which satisfies Equation 
(4). 

We shall consider Newton iteration for solution of Equation (3). We will thus need the Jacobian 
of f robot, which we recall is the 2 × 2 matrix ⎞⎛ 

J robot(q; X) = 
⎜⎜⎜⎜⎝  

∂f robot ∂f robot 
1 (q; X) 1 (q; X)
∂q1 ∂q2 

∂f robot ∂f robot 
2 (q; X) 2 (q; X)
∂q1 ∂q2 

⎟⎟⎟⎟⎠  
. (5)  

You will need to derive explicit expressions for the entries of J robot as a prerequisite to Question 2 
below. 

Questions 
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1. (10 points: Note both components of f_robot must be correct or no credit is earned.) In this 
question we would like you to write a Matlab function with signature 

function [f] = f_robot(q,X) 

which implements the function f robot(q; X) of (2). Note that f_robot is defined for our par
ticular robot arm and inasmuch the upper arm and lower arm lengths, L1 and L2, respectively, 
should be “hardwired” inside f_robot. 

The function must be named f_robot and furthermore must be stored in a file named 
f_robot.m. The function takes two function inputs. The first input is the 2 × 1 vector 
q which corresponds to the joint angle q = (q1 q2)

T of Equation (2); the set of allowable 
instances, or parameter domain, is 0 ≤ q1 < 2π, 0 ≤ q2 < 2π. The second input is the 
2 × 1 vector X which corresponds to the end effector position X of Equation (2); the set 
of allowable instances, or parameter domain, is not restricted. The function yields a single 
function output: the output is the 2 × 1 vector residual which corresponds to f robot(q; X) 
of Equation (2). 

The script for this question is provided in A6Q1.p; you should not modify this script in any 
way. We also provide a template for your f_robot function in f_robot_Template. You should 
include both A6Q1.p and f_robot.m in the YOURNAME_ASSIGNMENT_6 folder you upload  

 Note that grade_o_matic_A6 shall choose various “student” and “grader” instances  of the 
function inputs to determine if your code is correct; make sure that you also test your code 
yourself — a few “by hand” calculations and limiting cases should suffice. 

2. (20 points:	 Note all four entries of J_robot must be correct or no credit is earned.) In this 
question we would like you to write a Matlab function with signature 

function [J] = J_robot(q,X) 

which implements the function J robot(q; X) of (5). Note that J_robot is defined for our par
ticular robot arm and inasmuch the upper arm and lower arm lengths, L1 and L2, respectively, 
should be “hardwired” inside J_robot. 

The function must be named J_robot and furthermore must be stored in a file named 
J_robot.m. The function takes two function inputs. The first input is the 2 × 1 vector 
q which corresponds to the joint angle q = (q1 q2)

T of Equation (5); the set of allowable 
instances, or parameter domain, is 0 ≤ q1 < 2π, 0 ≤ q2 < 2π. The second input is the 2 × 1 
vector X which corresponds to the end effector position X of Equation (5); the set of allow
able instances, or parameter domain, is not restricted. The function yields a single function 
output: the output is the 2 × 2 matrix J which corresponds to J robot(q; X) of Equation (5). 

The script for this question is provided in A6Q2.p; you should not modify this script in any 
way. We also provide a template for your J_robot function in J_robot_Template. You should 
include both A6Q2.p and J_robot.m in the YOURNAME_ASSIGNMENT_6 folder you upload  
Note that grade_o_matic_A6 shall choose various “student” and “grader” instances of the

 function inputs to determine if your code is correct; make sure that you also test your  code
 yourself. 

3. (30 points: 7.5 points for each of Q_ws(1,:), Q_ws(2,:), X_ws(1,:), and X_ws(2,:).) In 
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this question we ask you to prepare a set of M joint angle–end effector positions,  

(Xk, Qk), 1 ≤ k ≤ M , (6) 

such that 

Requirement I. the Qk, 1 ≤ k ≤ M, are admissible — satisfy the constraint Equation (4) — and are 
distinct —  for k  ;Qk = Qk! = k'

Requirement II. f robot(Qk; Xk) = 0, 1 ≤ k ≤ M — the joint angle–end effector position pairs satisfy the 
relationship Equation (1). 

Note the set of joint angle-end effector pairs can serve several useful purposes: first, to 
visualize the robot workspace — which we recall is the set of end effector positions which can 
be “reached” by admissible joint angles; second, to improve the Newton iteration robustness 
and convergence — a set from which to choose a good initial guess. (The latter is discussed 
in greater depth in Question 4.) 

We would thus like you to write a Matlab function with signature 

function [Q_ws,X_ws] = workspace_robot(M) 

which creates the “discrete” robot workspace as defined in Equation (6). The function must be 
named workspace_robot and furthermore must be stored in a file named workspace_robot.m. 
The function takes one function input: this function input is M which corresponds to M of 
Equation (6) — the number of joint-angle–end effector position pairs generated; the set of al
lowable instances, or parameter domain, is 1 ≤ M ≤ 10000. The function yields two function 
outputs. The first output is the 2 × M array Q_ws which corresponds to Qk, 1 ≤ k ≤ M of 
Equation (6); note that Q_ws(:,k) = Qk. The second output is the 2 × M array X_ws which 
corresponds to Xk, 1 ≤ k ≤ M of Equation (6); note that X_ws(:,k) = Xk. 

The script for this question is provided in A6Q3.p; you should not modify this script in 
any way. We also provide you with a template for your workspace_robot function in 
workspace_robot_Template. You should include both A6Q3.p and workspace_robot in the 
YOURNAME_ASSIGNMENT_6 folder you upload   Note that grade_o_matic_A6 shall choose 
various

 
“student” and “grader” instances of the function inputs to determine if your code

 is correct and in particular to confirm that you honor Requirement I. and Requirement  II. 
in your construction; make sure that you also test your code yourself.  

Hints and Guidelines. You will note that the Requirement I. above does not completely  
specify the Qk, 1 ≤ k ≤ M . To choose the M joint angles we ask that you follow a particular  
approach: you should generate the Qk, 1 ≤ k ≤ M , as independent random darts from the  

1bivariate uniform distribution over the rectangle 0 ≤ Q1 ≤ π, 0 ≤ Q2 ≤ π. We make two 
further observations: first, in the random approach, the “distinct” aspect of Requirement I. is 
satisfied probabilistically — but with probability extremely close to unity, which is sufficient 
for our purposes; second, in the random approach, we naturally avoid (with probability very 
close to unity) darts exactly on the boundary of the constraint set — which is advantageous, 
in particular to guide the Newton iteration towards solutions which satisfy Equation (4). 
Note that, once the Qk, 1 ≤ k ≤ M , are specified, the Xk, 1 ≤ k ≤ M , are uniquely 

1In higher dimensions, random darts are a reasonably good idea; in just two dimensions, a uniform mesh might 
be slightly better — but a bit more difficult to implement, and for that reason we opt for the random approach. 
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determined by Requirement II; Requirement II invokes forward and not inverse kinematics 
since Xk = f robot(Qk; (0 0)T ) — thus Requirement II is computationally very simple, and of 
course you should take good advantage of your f_robot Matlab function of Question 1. 

You can readily visualize the workspace once you have created Q_ws,X_ws. We might suggest 
plot(Q_ws(1,:),Q_ws(2,:),'o') to display the joint angles, and then (a second figure) 
plot(X_ws(1,:),X_ws(2,:),'o') to display the corresponding end effectors; the second 
figure “fills out” the robot workspace for M chosen sufficiently large. Note these plots are 
entirely elective and not part of the deliverable. 

4. (40 points) We	 now consider Newton’s method to solve the inverse kinematics problem: 
for given X, we look for QX which satisfies Equation (3) as well as the condition Equa
tion (4). Our approach will comprise two stages. In the “offline” stage, we create with 
workspace_robot(M) a discrete workspace (Qk, Xk), 1 ≤ k ≤ M . In the “online” stage we 
perform the Newton procedure. 

The online stage also comprises two steps. In the first step, we find k∗ such that 

IX − Xk∗ I ≤ IX − XkI for all k such that k = k ∗ ,	 (7) 

and then choose Qk∗ as the initial guess (for QX ) in the subsequent Newton algorithm. In 
words, Xk∗ is the end effector in our discrete workspace which is closest to the desired end 
effector X; our initial guess for the Newton algorithm, Qk∗ , is the the joint angle which 
realizes Xk∗ . By continuity arguments we can expect that if M is large enough then our 
first guess Qk∗ should be close enough to QX such that the Newton algorithm will converge 
and converge quickly (and furthermore to a solution which satisfies Equation (4)). In the 
second step, we perform the Newton algorithm — compute a sequence of iterates — until 
we satisfy a tolerance or exceed a prescribed maximum number of iterations; we must also 
confirm that Equation (4) is satisfied — and if not, alert the “user” that the calculated root 
is not admissible. 

We have already addressed the offline stage in Question 3: in the offline stage, we invoke 
[Q_ws,X_ws] = workspace_robot(M) for some given M. In the current question we address 
the online stage: we would like you to write a Matlab function with signature 

function [Q_X_hat,exitflag] = Newton_robot(X,Q_ws,X_ws,Newton_tol,num_iter_max) 

which implements the two steps of the online stage described above. Note that Q_ws and 
X_ws are inputs to Newton_robot, as described in more detail below. 

The function must be named Newton_robot and furthermore must be stored in a file named 
Newton_robot.m. The function takes five function inputs. The first input is the 2 × 1 vector 
X and corresponds to the end effector position X (of Equation (3)) for which we wish to find 
the corresponding joint angle QX ; the set of allowable instances is not restricted. The second 
and third inputs are respectively the 2 × M arrays Q_ws and X_ws which are simply the out
puts of workspace_robot(M) for some given M (see Question 3); note that M is not an input to 
Newton_robot, but of course can be deduced in Newton_robot from (say) Q_ws. The fourth 
input is the scalar Newton_tol which is our residual tolerance: we terminate the Newton algo
rithm as soon as If robot(Q̂X ; X)I ≤ Newton_tol, where Q̂X is the current Newton iterate 
(and hence current approximation to QX ); the set of allowable instances for Newton_tol 
is 1 × 10−6 ≤ Newton_tol ≤ 0.01. The fifth and final input is num_iter_max which is the 
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maximum number of iterations we permit: we terminate the Newton algorithm once we have 
performed num_iter_max “Jacobian solves”; the set of allowable instances for num_iter_max 
is 4 ≤ num_iter_max ≤ 10. The function yields two function outputs. The first output is the 
2 × 1 vector Q_X_hat which is the Newton iterate Q̂X upon termination of the Newton algo
rithm — and hence our approximation to QX of Equation (3); recall we terminate as soon 
as either our tolerance is satisfied or we reach the maximum number of iterations permitted. 

1 if If robot( ˆThe second output is the scalar exitflag: exitflag = QX ; X)I ≤ Newton_tol 
2 if If robot( ˆand Q̂X satisfies Equation (4); exitflag	 = QX ; X)I ≤ Newton_tol but Q̂X 

3 if If robot( ˆdoes not satisfy Equation (4); exitflag = QX ; X)I > Newton_tol. 

Hints and Guidelines. You should at the end of each Newton iteration — after each Newton 
update — enforce our condition 0 ≤ Q1 < 2π, 0 ≤ Q2 < 2π — easily implemented with the 
Matlab built–in function mod; without this adjustment, grade_o_matic_A6 will not award 
you credit. Note, however, that you should not enforce the condition Equation (4). (There 
are methods in which we can incorporate constraints (on which branch should be considered) 
directly into the iterative procedure, however these techniques require considerable additional 
background and are beyond our 2.086 introduction.) 

You should make sure to invoke your Matlab functions f_robot and J_robot. Functions 
permit encapsulation and re-use. You have debugged these functions in Questions 1 and 2 and 
now you reap the benefits. Note that you do not need to pass handles for these functions to 
Newton_robot, but rather you may directly hardwire (in Newton_robot) the calls to f_robot 
and J_robot: your Newton_robot function need only treat our particular robot arm. 

You may find that the Matlab built–in function sort with two outputs is very convenient 
to perform the first step, Equation (7), of the online procedure. 

In order to test Newton_robot yourself, you will need to first call your workspace_robot 
function to generate Q_ws and X_ws. Note, however, that grade_o_matic_A6 will provide 
its own Q_ws and X_ws when checking the student and grader instances. In fact, for this 
question, the grade_o_matic student and grader instances coincide — so you will know your 
points for this question before submission. But grade_o_matic_A6 will test instances which 
exercise both the first step and the second step of your online procedure, as well as the 
different possible exit (exitflag) conditions, and all instances must be correct to earn the 
20 points each for Q_X_hat and exitflag. For debugging purposes you might consider very 
small discrete workspaces (M = 1 or M = 2 joint angle-end effector pairs) which will permit 
you to better isolate the two steps — first guess, and Newton algorithm, respectively — of 
the online procedure. 

(Reverse) Challenge. Reconsider your procedure of Question 4 but replace the Newton 
algorithm with an appropriate call to fsolve. Note you may retain the offline stage as 
before, and also the first step of the online procedure — the first guess based on Equation 
(7); you need only replace the second step of the online stage. You should also bear in mind 
that fsolve may find minima of the residual squared which do not correspond to roots (of 
Equation (3)), and hence you should reflect this new “failure” mode in your exitflag (based 
on the corresponding exitflag provided by fsolve itself). As always, these challenges bear 
no credit and hence are entirely elective. 
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