
2.14/2.140 Problem Set 4

Assigned: Wed. Feb. 26, 2014
Due: Wed. March 5, 2014, in class
Reading: Lecture notes on loop shaping, frequency response, and Bode plots.

The following problems are assigned to both 2.14 and 2.140 students.

Problem 1 Problem Archive 11.5 Pole Zero Plots. Sketch the indicated Bode plots by hand using
the sketching rules presented in the lecture and notes. Do not use Matlab to generate these
plots.

Problem 2 The Bode plot given below is for a notch filter, which can be used as part of compen-
sation for attenuating resonances. This is called a notch filter because it cuts out a range of
frequencies. On the given Bode plot, mark the straight asymptotes, and the phase staircase
function. Use this analysis to determine the filter transfer function and draw a pole-zero map
for the filter.

Problem 3 Archive Problem 13.1 Rooftop Antenna
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Problem 4 This problem considers the paint stirrer shown below. A brushed DC motor is used
to stir a bucket of paint as shown in the figure. The motor has a torque constant K [Nm/A]
and the motor plus stirrer inertia is J [kg-m2]. The motor is considered ideal in that it has no
inductance and no resistance; the only resistance in the electrical circuit is R as shown. The
rotor is rigidly linked to the stirrer, which has no flexibility; the combined assembly has a
rotational velocity Ω rad/sec. The effect of the paint on the stirrer is modeled as a rotational
damper B [Nms/rad].

a) Solve for the transfer function Gp(s) = Ω(s)/Vi(s) in terms of the system parameters. Now set
the parameter values as K = 0.5 Nm/A, R = 5 Ω, B = 0.15 Nms/rad, and J = 0.2 kgm2.
For these parameter values, make a hand sketch of the Bode plot for Gp.

b) Now, let the system input Vi be driven by a PI controller of the form

Gc(s) = Kp

(
1 +

Ki

s

)
.

This system has a speed reference input Ωr and output Ω as shown in the block diagram below
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Choose the controller gain values Kp and Ki to set the loop crossover frequency ωc =
10 rad/sec, with a phase margin φm = 45◦. Show your calculations. You should be able
to accomplish this design using hand-sketched Bode plots, and then using Matlab for confir-
mation.

c) Create a Simulink simulation of the loop with the controller implemented as shown in the block
diagram above. For now, let the integrator have an unbounded output (leave the integrator
limit output box unchecked). Set your simulation to use the variable step solver with a max
step size limit of 0.01 sec, and use the ode45 solver. Note that the standard simulation window
has a simulation stop time of 10 sec. You may want to adjust this value.

Let the input reference Ωr take a step from zero to 10 rad/sec at t = 0, from initial rest
conditions. Run this as a Simulink simulation and record and plot the responses Vi(t) and
Ω(t). What is the maxiumum value of the Vi during this transient? What is the steady-state
value of Vi after the transient has settled?

d) Now set the integrator limits to ±1.5 times the steady-state value of Vi from part c), and check
the integrator limit box. (This insures that the integrator term is able to supply the required
steady-state control effort for a speed of 10 rad/sec, but not much more.) Again let the input
reference Ωr take a step from zero to 10 rad/sec at t = 0, from initial rest conditions. Run
this as a Simulink simulation and record and plot the responses Vi(t) and Ω(t). How do these
differ from the unlimited case in part c)?

e) Be sure to keep a copy of your calculations and this model, as we may continue studying it in
the next problem set.

Problem 5 Archive Problem 17.21 Pole Zero Bode Matching
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The following problems are assigned to only 2.140 students. Students in 2.14 are
welcome to work these, but no extra credit will be given.

Problem G1 This problem was used as the ME quals systems oral exam in 2003. In the inverted
pendulum system shown below, note that gravity acts in the downward direction as shown.
A rigid massless link constrains the mass M to rotate about the pivot shown. The distance
from the pivot point to the center of gravity of the mass is L m. The mass has negligible
moment of inertia. The horizontal position of the mass in meters is x(t). The system is driven
by a position input w(t) m. The input is connected to the mass via the spring k with units
of N/m, and via the damper b shown with units of Ns/m. In the problem, we only consider
models which describe motions in which x is very small; do not attempt to write models for
large motions.

M
g

Mass position x(t)Position input w(t)

b

k

L

pivot

a) For this system, derive a mathematical model which describes the system for small motions.
The resulting linear model should have an input w(t) and output x(t). Be sure to take into ac-
count the effect of gravity. Explain your reasoning. What is the transfer function X(s)/W (s)?

b) For what range of k and b is the system stable?

c) Now consider the controlled pendulum system shown below.
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M
g

Mass position x(t)

Force output F(t)

L

pivot

Reference input w(t)

Controller

The controller has inputs of the mass position x(t) and reference command w(t). The con-
troller outputs a force F (t) which is applied to the mass as shown. Develop a controller which
provides an indentical small-motion transfer function X(s)/W (s) to that derived in part a)
above. You can feel free to use any linear operation within the controller block. Explain your
reasoning for the controller you develop.

d) Now assume that a time delay of T sec is introduced into the position measurement before it is
received by the controller. How does this affect the stability of the controlled system? Why?
Show your analytical reasoning. Hint: An approach looking at phase margin is the best way
to understand the effect of the time delay.
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