
Basic Concepts of Inference
 

Statistical Inference is the process of making conclusions using data that is subject to 
random variation. 

Here are some basic definitions. 

• Bias(θ̂) := E(θ̂) − θ, where θ is the true parameter value and θ̂ is an estimate of it 
computed from data. 

An estimator whose bias is 0 is called unbiased. Contrast bias with: 

• Var(θ̂) = E(θ̂ − E(θ̂))2 . Variance measures “precision” or “reliability”. 

• Mean-Squared Error (MSE) - a way to measure the goodness of an estimator. 

MSE(θ̂) = E(θ̂ − θ)2 

= E[θ̂ − E(θ̂) + E(θ̂) − θ]2   
= E[θ̂ − E(θ̂)]2 + E[E(θ̂) − θ]2 + 2E [θ̂ − E(θ̂)][E(θ̂) − θ]

The first term is Var(θ̂). In the second term, the outer expectation does nothing because the 
inside is a constant. The second term is just the bias squared. In the third term, the part 
E(θ̂) − θ is a constant, so we can pull it out of the expectation. But then what’s left inside 
the expectation is E[θ̂ − E(θ̂)] which is zero, so the third term is zero.   2 

MSE(θ̂) = Bias(θ̂) + Var(θ̂). (1) 

Perhaps you have heard of the “Bias-Variance” tradeoff. This has to do with statistical 
modeling and will be discussed when you hear about regression. It boils down to a tradeoff 
in how you create a statistical model. If you try to create a low bias model, you risk that 
your model might not explain the data well and have a high variance and thus a larger MSE. 
If you try to create a low variance model, it may do so at the expense of a larger bias and 
then still a larger MSE. 
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• We will now show why we use:
   
s 2 =

1 
(xi − x̄)2 rather than s 2 =

1 
(xi − x̄)2 .wrongn − 1 n

i i 

The answer is that s2 is an unbiased estimator for σ2! 

Let’s show this. We have to calculate Bias(S2) = E(S2)−σ2 which means we need E(S2). 
Remember that S2 follows a (scaled) chi-square distribution, and if we go back and look in 
the notes for the chi-square distribution, we’ll find that the expectation for S2 is σ2 . (It’s 
one of the last equations in the chi-square notes). So, Bias(S2) = σ2 − σ2 = 0. This is why 
we use n − 1 in the denominator of S2 . 

However, it turns out that the mean square error is worse when we use n − 1 in the 
denominator: MSE(S2) > MSE(S2 ).wrong

Let’s show this. Again going back to the notes on the chi-square distribution, we find 
that: 

2σ4 

Var(S2) = . 
n − 1 

Plugging this in to equation (1) using S2 as the estimator θ̂, we find:   2 2σ4 

MSE(S2) = Var(S2) + Bias(S2) = + 0, 
n − 1 

whereas 
2n − 1 

MSE(S2 ) = (skipping steps here) = 
n2 

σ4 .wrong

And if you plot those two on the same plot, you’ll see that MSE(S2) is bigger than 
MSE(S2 ).wrong

MSE(S2) (top) and MSE(S2 ) (bottom) versus n for σ2 = 1. wrong

So using S2 rather than S2 actually hurts the mean squared error, but not by much and wrong 
actually the difference between the two shrinks as n gets large. 

• The standard deviation of θ̂ is called the standard error.
 
√
 

SE(x̄) = s/ n 

is the estimated standard error of the mean for for independent r.v. - this appears a lot.
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