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Guided Study Program in System Dynamics 
System Dynamics in Education Project


System Dynamics Group

MIT Sloan School of Management1


Solutions to Assignment #6 
November 3, 1998 

Reading Assignment: 

Please refer to Road Maps 3:  A Guide to Learning System Dynamics (D-4503-4) and 
read the following: 

•	 Introduction to Computer Simulation,2 by Nancy Roberts, et al.: Chapter 15 
• Study Notes in System Dynamics,3 by Michael Goodman: Sections 3.10 and 3.11, 

and Exercises 6 and 7 

Then refer to Road Maps 7:  A Guide to Learning System Dynamics (D-4507-1) and read 
the following paper from Road Maps 7: 

•	 Mistakes and Misunderstandings: Examining Dimensional Inconsistency, by Michael 
Shayne Gary (D-4452-1) 

Exercises: 

1.	 Introduction to Computer Simulation 

Please read Chapter 15 of Introduction to Computer Simulation by Nancy Roberts. This 
reading will reinforce your understanding of positive and negative feedback. There are 
no exercises assigned on the reading, but you should be sure you are comfortable with all 
of the concepts covered before proceeding. 

1 Copyright © 1998 by the Massachusetts Institute of Technology. Permission granted to distribute for

non-commercial educational purposes.

2 Roberts, Nancy, David Andersen, Ralph Deal, Michael Garet, and William Shaffer, 1983. Introduction to

Computer Simulation:  A System Dynamics Approach. Portland, OR:  Productivity Press. 562 pp.

3 Goodman, Michael R., 1974. Study Notes in System Dynamics, Portland, OR: Productivity Press. 388 pp.
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2. Study Notes in System Dynamics (Sections 3.10 and 3.11, Exercises 6 and 7) 

A. Read section 3.10. Build and simulate the inventory control model on page 52. In 
your assignment solutions document, include the model diagram, documented equations, 
and a graph of model behavior. 

Model diagram: 

Inventory 
order rate sales rate 

DESIRED 

inventory
discrepancyFRACTION 

ORDERED 
PER WEEK 

INVENTORY 

Model equations: 

DESIRED INVENTORY = 200 
Units: unit 
The desired number of units in inventory. 

FRACTION ORDERED PER WEEK = 0.5 
Units: 1/Week 
The fraction of inventory discrepancy ordered each week. 

Inventory = INTEG (order rate - sales rate, DESIRED INVENTORY) 
Units: unit 
Number of units in inventory. 

inventory discrepancy = DESIRED INVENTORY - Inventory 
Units: unit 
The difference between desired and actual inventory. 

order rate = inventory discrepancy * FRACTION ORDERED PER WEEK 
Units: unit/Week 
Number of units ordered each week. 

sales rate = STEP(20,4) 
Units: unit/Week 
The rate of sales. 
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Model behavior: 

Behavior of inventory control model 
200 unit 
40 unit/Week 

100 unit 
20 unit/Week 

0 unit 
0 unit/Week 

0  5  10
Weeks 

15  20 

Inventory : inventory 
sales rate : inventory 
order rate : inventory 

unit 
unit/Week 
unit/Week 

B. The inventory control model contains a feedback loop linking the stock to the inflow. 
Explain intuitively why the system exhibits negative-feedback behavior instead of 
positive-feedback behavior. 

The inventory-control system is an example of a goal-gap negative-feedback system. 
After the step increase in “sales rate,” the “Inventory” starts decreasing, creating a 
positive “inventory discrepancy” between the “DESIRED INVENTORY” and 
“Inventory.”  Hence, the “order rate” inflow starts increasing, but “Inventory” keeps 
falling, although at a slower rate. The “inventory discrepancy” therefore keeps 
increasing, causing the “order rate” to increase further.  The system keeps “correcting” 
itself as long as the “order rate” inflow is smaller than the “sales rate” outflow.  Notice 
that when the “Inventory” stabilizes at equilibrium, the “Inventory” level is not equal to 
its desired value. 

C. What is the half-life of the inventory? Give a mathematical answer and compare it 
with results from graphs of model behavior. 

The half-life of the inventory is: 

half-life = 0.7 / FRACTION ORDERED PER WEEK = 0.7 / 0.5 = 1.4 weeks 
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Notice that this half-life is the half-life of the “inventory discrepancy” between the 
“Inventory” and the “DESIRED INVENTORY,” and not of the stock itself.  The half-life 
now represents the amount of time it takes for the “inventory discrepancy” to close one 
half of the difference between its initial and equilibrium value, or for the stock to close 
one half of the difference between its initial value and its equilibrium goal value. These 
results can be confirmed by looking at graphs of model behavior. 

D. Do Exercise 6 on page 183 by hand, then verify your results by simulation. In your 
assignment solutions document, include graphs of model behavior for questions E6.4 to 
E6.7. 

E6.4

The model behavior is the same as in part A.


E6.5

When the “FRACTION ORDERED PER WEEK” drops to 0.25/week, the half-life

increases to 0.7 / 0.25 = 2.8 weeks. That is, the system delay for responding to changes

in the “sales rate” is doubled.  The stock then reaches equilibrium after a longer time, and

its equilibrium value is lower than in part A. The “order rate” inflow is at equilibrium

when it equals the “sales rate” of 20 units per week, but because the half-life is doubled,

it takes twice as long to close a half of the gap between the “order rate” and the “sales

rate.”  Hence, the inflow takes longer to reach equilibrium as well.


Exercise E6.5 
200 unit 
40 unit/Week 

100 unit 
20 unit/Week 

0 unit 
0 unit/Week 

0  5  10
Weeks 

15  20 

Inventory : FOW25 
sales rate : FOW25 
order rate : FOW25 

unit 
unit/Week 
unit/Week 
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E6.6 
If the “FRACTION ORDERED PER WEEK” increases to 0.75/week, the negative-
feedback loop closes the gap faster, with half-life equal to 0.7 / 0.75 = 0.933 weeks. The 
“order rate” as well as “Inventory” approach their equilibrium values quickly, and the 
equilibrium value of “Inventory” is higher than in part A.  Notice how steep the “order 
rate” is compared to that in exercise E6.5 with a much smaller “FRACTION ORDERED 
PER WEEK.” 

Exercise E6.6 
200 unit 
40 unit/Week 

100 unit 
20 unit/Week 

0 unit 
0 unit/Week 

0  5  10
Weeks 

15  20 

Inventory : FOW75 
sales rate : FOW75 
order rate : FOW75 

unit 
unit/Week 
unit/Week 

E6.7 
If the “FRACTION ORDERED PER WEEK” is 0.5/week and the “sales rate” steps up to 
40 units/week, the half-life is again equal to 0.7 / 0.5 = 1.4 weeks. The “discrepancy” 
between “Inventory” and “DESIRED INVENTORY,” however, is twice that of part A. 
Therefore, it takes the same amount of time to reach equilibrium as in part A, but the 
equilibrium value of “Inventory,” 120 units, is twice as far from 200 units as in part A 
(160 units). 
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Exercise E6.7


200 unit 
40 unit/Week 

100 unit 
20 unit/Week 

0 unit 
0 unit/Week 

0  5  10
Weeks 

15  20 

Inventory : sales40 
sales rate : sales40 
order rate : sales40 

unit 
unit/Week 
unit/Week 

E. Read section 3.11. Examine the liquid cooling model on page 55. Using mental 
simulation, find the half-life of the coffee heat (use parameter values listed in the 
equations). 

The half-life of the system is: 

half-life = 0.7 / HEAT TRANSFER CONSTANT = 0.7 / 0.1 = 7 minutes. 

F. Using mental simulation, determine how much time elapses before coffee temperature 
and room temperature are approximately equal. Explain your answer. 

The coffee starts out at 200 degrees, and gradually decreases to a temperature of 78 
degrees, the room temperature. The change in the coffee temperature is driven by the 
difference between the coffee temperature and the room temperature. When the coffee 
temperature equals the room temperature, the coffee temperature stops changing. 

The initial discrepancy between the coffee temperature and the room temperature is 
122 degrees. After 7 minutes (one half-life), the discrepancy is halved, bringing the 
coffee temperature down by (200-78) / 2 = 61 degrees to (200 - 61) = 139 degrees. After 
14 minutes, the gap between coffee temperature and room temperature is halved again, 
by (139-78) / 2 = 30 degrees to 139 – 30 = 109 degrees. After 21 minutes, the 
temperature is 94 degrees and after 28 minutes, the gap halves again to 86 degrees. After 
35 minutes, the temperature is at 82 degrees; after 42 minutes, the temperature is 80 
degrees and after 49 minutes, the gap is 1 degree and the coffee temperature is 79 
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degrees. At 79 degrees, we can consider the coffee temperature and room temperature 
about equal. Notice that the time elapsed is 49 minutes, or about seven half-lives. 
Some participants raised questions about how to decide when the stock has reached 
equilibrium (the goal) in the case of negative feedback. The stock in reality only 
approaches the equilibrium, or goal value, and therefore theoretically never reaches the 
goal value. 

The period during which the stock value is changing significantly is called the 
transient period; the period after the transient period, when the stock is considered to 
have reached a steady state value, is called the steady state. Often, as an approximation, a 
time period equal to four times the time constant is considered to be the transient period 
duration. After three time constants, the value of the stock equals 95% of the equilibrium 
value, which is often close enough. In this case, the system is in equilibrium after 21 
minutes. It is not incorrect, however, to be more precise and give any time greater than 
21 minutes as the time when the coffee temperature “reaches” equilibrium.  The answer 
depends on your criteria for what is “close enough” to the goal. 

G. Build and simulate the liquid cooling model. In your assignment solutions document, 
include the model diagram, documented equations, and graphs of model behavior. Were 
your answers for parts E and F correct? Why or why not? 

Model diagram: 

Coffee Heat 
heat transfer rate 

coffee temperature 

HEAT TO TEMPERATURE 
CONVERSION CONSTANT 

discrepancy 

ROOM TEMPERATURE 

HEAT TRANSFER 
CONSTANT 

Model equations: 

Coffee Heat = INTEG (heat transfer rate, 200) 
Units: BTU 
The heat of the cup of coffee. 

coffee temperature = Coffee Heat * HEAT TO TEMPERATURE CONVERSION 
CONSTANT 
Units: degree 
The coffee temperature in degrees Fahrenheit. 
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discrepancy = ROOM TEMPERATURE - coffee temperature 
Units: degree 
The difference between the room temperature and the coffee temperature. If the 
coffee temperature is higher than room temperature, the discrepancy is negative. 

HEAT TO TEMPERATURE CONVERSION CONSTANT = 1 
Units: degree/BTU 
Assume that each BTU converts to 1 degree Fahrenheit. 

HEAT TRANSFER CONSTANT = 0.1 
Units: BTU/degree/Minute 
The fraction of coffee heat that is transferred to or from the coffee, given the 
temperature difference. 

heat transfer rate = discrepancy * HEAT TRANSFER CONSTANT 
Units: BTU/Minute 
The rate at which heat is transferred to or from coffee. 

ROOM TEMPERATURE = 78 
Units: degree 
The normal room temperature in degrees Fahrenheit. 

Model behavior: 

Coffee Heat and heat transfer rate 
200 BTU 

0 BTU/Minute 

100 BTU 
-10 BTU/Minute 

0 BTU 
-20 BTU/Minute 

0  10  20  30
Minutes 

40  50 

Coffee Heat : coffee 
heat transfer rate : coffee 

BTU 
BTU/Minute 
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The answers in parts E and F were correct. 

H. Do Exercise 7 on page 193 and check your answers with the solutions on page 203. 
You do not need to submit anything for this part. Please let us know, however, if you had 
problems with any of the exercises. 

3. Mistakes and Misunderstandings:  Examining Dimensional Inconsistency 

Please read this paper carefully. You do not need to submit anything for this reading. 
The lesson you should learn from it is to always use the units checking feature in Vensim 
PLE! 

4. Independent Modeling Exercise: Population Demographics 

This exercise will develop a population dynamics model and use the model to test several 
different scenarios. 

A. Imagine a small town in rural Kansas with 3000 inhabitants. The population is 
initially evenly distributed between children aged 0 to 20 years, child-bearing adults 
aged 20 to 45 years, and seniors aged 45 to 75 years (assume that no one lives past the 
age of 75). In its marital relations, the town is quite typical; when two people are 
married, they have, on average, 2 children together. You are interested in studying how 
the demographics of the small town will change over time. You can assume for the 
purposes of this model that all deaths are related to old age. 

The model will contain the elements listed below. Identify each element as either stock, 
flow, or constant, and label its units. For each stock, determine its inflows and outflows. 

• maturing 
• years as a child-bearing adult 
• children 
• number of child-bearing couples 
• deaths 
• years as a child 
• aging 
• births 
• seniors 
• babies per couple 
• child-bearing adults 
• adults per couple 
• years as a senior 
• total population (sum of the populations of all age groups) 
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Please note that some elements in the model are auxiliary variables, which are used to 
disaggregate rate equations into more understandable components. 

Name Type Units 

maturing flow out of children into child- people/year 

bearing adults 

years as a child-bearing adult constant years 

children stock people 

number of child-bearing couples auxiliary variable couples 

deaths flow out of seniors people 

years as a child constant years 

aging flow out of child-bearing adults people/year 

into seniors 

births flow into children people/year 

seniors stock people 

babies per couple constant people/couple 

child-bearing adults stock people 

adults per couple constant people 

years as a senior constant years 

total population auxiliary variable people 

Notice that “BABIES PER COUPLE” has units of people/couple.  One could also define 
“BABIES PER COUPLE” to have units of people/people, making the units effectively 
dimensionless. Using more specific units, however, often makes it easier to keep track of 
different variables while formulating equations. The rate of “births” is then the 
“NUMBER OF CHILD-BEARING COUPLES” multiplied by the number of “BABIES 
PER COUPLE,” divided by the number of years over which the couple may have 
children. 

Also, notice that the “total population” should not be modeled as a stock with “births” as 
inflow and “deaths” as outflow.  Rather, the “total population” should be modeled as an 
auxiliary variable that is the sum of the other three stocks. Although in reality, the total 
population is a stock, modeling the “total population” as a stock would be duplicating 
other stocks in the model. In addition, if one modified the model to have outflows of 
deaths from each stock, then modeling the “total population” as a stock would be wrong, 
but modeling it as an auxiliary sum would be correct. 
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B. Using Vensim PLE, combine the elements to represent the structure of the system. In 
your assignment solutions document, please include the model diagram. 
Hint: One time constant will be used twice in the model to define two different rates. 

Model diagram: 

Children Childbearing 
Adults Seniors 

births maturing aging deaths 

total population 

BABIES PER 
COUPLE 

ADULTS PER 
COUPLE YEARS AS 

A CHILD 

YEARS AS A 
CHILDBEARING ADULT 

YEARS AS 
A SENIOR 

number of 
childbearing couples 

C. Using the description of the system provided above, define the equations for all model 
elements. In your assignment solutions document, please include the documented 
equations. 

Model equations: 

ADULTS PER COUPLE = 2 
Units: person/couple 
Number of adults in a child-bearing couple. 

aging = Childbearing Adults / YEARS AS A CHILDBEARING ADULT 
Units: person/year 
If people are child-bearing adults of n years, then on average 1/n of all child­
bearing adults become seniors each year. 

BABIES PER COUPLE = 2 
Units: person/couple 
The number of children born by each couple during the couple’s child-bearing 
years. 

births = number of childbearing couples * BABIES PER COUPLE / YEARS AS A 
CHILDBEARING ADULT 
Units: person/year 
The number of children born by all child-bearing couples per year. 
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Childbearing Adults = INTEG (maturing-aging, 1000) 
Units: person 
Number of people between 20 and 45 years of age. 

Children = INTEG (births-maturing, 1000) 
Units: person 
Number of people 20 years of age and younger. 

deaths = Seniors / YEARS AS A SENIOR 
Units: person/year 
If people live n years as a senior, then on average 1/n of all seniors die each year. 

maturing = Children / YEARS AS A CHILD 
Units: person/year 
If people live n years as a child, then on average 1/n of all children will mature to 
adulthood each year. 

number of childbearing couples = Childbearing Adults / ADULTS PER COUPLE 
Units: couple 
Number of couples who are able to have children. 

Seniors = INTEG (aging - deaths, 1000) 
Units: person 
Number of people between the ages of 45 and 75. 

total population = Children + Childbearing Adults + Seniors 
Units: person 
The total population is the sum of all three population groups. 

YEARS AS A CHILD = 20 
Units: year 
The number of years a person is a child. Assuming that a person is a child from 
birth until the age of 20, a person lives 20 years as a child. 

YEARS AS A CHILDBEARING ADULT = 25 
Units: year 
The number of years during which people can bear children.  Assume that people 
can bear children from when they are 20 years old until when they are 45 years 
old, over a period of 25 years. 

YEARS AS A SENIOR = 30 
Units: year 
The number of years during which a person lives as a senior.  Assume that on 
average, a person lives as a senior from age 45 until age 75, over a period of 30 
years. 
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D. Before you simulate the model, draw reference modes for all stocks in the model. You 
do not need to include these in your assignment solutions document, but you do need to 
draw them in order to be able to answer the next question. 

E. Simulate the model over 100 years. Make sure to use a DT that is less than one-
eighth of the shortest time constant in the model. In your assignment solutions document, 
include graphs of the behavior of all stocks and of total population. Did the model 
generate the behavior you predicted? Why or why not? 

Model behavior: 

Population groups in Kansas 
1,600 

1,200 

800 
0  25  50

Years 
75 100 

Children : kansas 
Childbearing Adults : kansas 
Seniors : kansas 

person 
person 
person 
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Total population in Kansas


3,400 

3,200 

3,000 
0  25  50  75 100 

Years 

total population : kansas person 

The behavior of the model makes sense. Each stock starts with 1000 people, and 
according to the rate equation formulations, during the first time step (DT=0.0625) the 
stocks behave as follows: 

Children: Each person lives 20 years as a child, so 1/20 of the children (50 people 
initially) leave the stock per year. The stock is, however, being replenished by “births.” 
Initially, there are 1000 child-bearing adults, thus 500 child-bearing couples. If each 
couple has 2 children over the course of 25 years, then each year a couple has 2/25 
children. The total number of children born per year is 500 * 2 / 25 = 40 children. 
Because the inflow to the “Children” stock is 40 people while the outflow is 50 people, 
the net flow into the stock is –10 people per year, so the number of “Children” decreases 
by 0.0625 * 10 = 0.625 people during the first time step. The stock will keep decreasing 
until the inflow “births” equals the outflow “maturing.” 

Childbearing Adults: Each person lives 25 years as a child-bearing adult, so 1/25 of the 
adults (40 people initially) leave the stock each year through the aging process. The 
stock is, however, replenished by 50 maturing children. The net flow into the stock is 10 
people/year, so the number of “Childbearing Adults” increases by 0.0625 * 10 = 0.625 
people during the first time step. The stock will continue to grow until the inflow 
“maturing” equals the outflow “aging.” 

Seniors: Each person lives 30 years as a senior, so 1/30 of the seniors (1000/30=33 
people initially) leave the stock through “deaths”.  The stock of “Seniors,” however, also 
gains 40 new people through the “aging” inflow.  Therefore, the net flow into the stock is 
6.67 people per year, so the number of “Seniors” increases by 0.0625 * 6.67 = 0.42 
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people during the first time step. The stock will continue to grow until the inflow 
“aging” equals the outflow “deaths.” 

total population: Add up the net increase or decrease into each stock to see that the total 
population increases by 0.42 people during the first time step. 

To find out whether the system will reach equilibrium or will exhibit exponential 
behavior, one must analyze the dynamics of the birth loop. 

Notice that each couple, in its lifetime, gives birth to two children who essentially replace 
the couple in the population. The exact substitution gives the impression that the total 
population will remain unchanged. The population will only be unchanged, however, if 
the time delays for all stocks are the same. Because it takes 25 years for each couple’s 
two children to enter the “Children” stock but only 20 years for children to mature, the 
net effect is that the number of maturing children will always be larger than the number 
of children born. The faster children become “Childbearing Adults,” however, the more 
“Childbearing Adults” in the population, hence the greater the birth rate.  Equilibrium is 
reached when the sum of inflows into each stock equals the sum of outflows from the 
stock: 

For the stock of “Children” to be in equilibrium: 
births = maturing 
number of childbearing couples * BABIES PER COUPLE / YEARS AS A 

CHILDBEARING ADULT = Children / YEARS AS A CHILD 
(Childbearing Adults / 2)*2 / 25 = Children / 20 
Childbearing Adults / 25 = Children / 20 

For the stock of “Childbearing Adults” to be in equilibrium: 
maturing = aging 
Children / YEARS AS A CHILD = Childbearing Adults / YEARS AS A 

CHILDBEARING ADULT 
Children / 20 = Childbearing Adults / 25 

For the stock of “Seniors” to be in equilibrium: 
aging = deaths 
Childbearing Adults / YEARS AS A CHILDBEARING ADULT = Seniors / YEARS 

AS A SENIOR 
Childbearing Adults / 25 = Seniors / 30 

The first two equilibrium equations give the same equality. The third equation is 
different but does not conflict with the first two. Equilibrium is reached when the system 
reaches the following proportions: 

Children / 20 = Childbearing Adults / 25 = Seniors / 30 
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F. Imagine a small agricultural village in central China. Again, a population of 3000 
people is initially evenly distributed between children aged 0 to 20 years, child-bearing 
adults aged 20 to 45 years, and seniors aged 45 to 75 years. In this village, however, 
each couple only has one child. 

Change the original population model to represent the new scenario. What happens to 
the population distribution now? Draw reference modes for each stock. Then simulate 
the model over 100 years. In your assignment solutions document, include graphs of the 
behavior of all stocks and of total population. Did the model generate the behavior you 
predicted? Why or why not? 

Model behavior in the “China” scenario: 

Population groups in China 
1,200 

600 

0 
0  25  50

Years 
75 100 

Children : china 
Childbearing Adults : china 
Seniors : china 

person 
person 
person 
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Total population in China 
3,000 

1,500 

0 
0  25  50  75 100 

Years 

total population : china person 

Let us examine the initial behavior (during the first time step of 0.0625) of each stock in 
this scenario to find the equilibrium values of the system: 

Children: The initial outflow is, as before, 50 people per year. The population contains 
1000 “Childbearing Adults” forming 500 child-bearing couples.  Each couple has only 
one child in 25 years, or 1/25 children per year. The inflow of “births” is therefore 500 * 
1 / 25 = 20 children/year. Thus the net flow in the stock is –30 people per year, so the 
number of “Children” decreases by 0.0625 * 30 = 1.875 people during the first time step. 

The stocks “Childbearing Adults” and “Seniors” behave as before, changing by 0.625 and 
0.42 people during the first time step, respectively. The change in the “total population” 
is –1.875 + 0.625 +0.42 = –0.83 people during the first time step. 

Intuitively, one would think that because each couple is replaced by only one person, the 
stocks should be decreasing throughout the simulation, until the population of each stock 
reaches zero. The initial increase in the stocks “Childbearing Adults” and “Seniors” is 
caused by the delays in the system. That is, although the number of “Children” is 
decreasing quickly, the decrease does not affect the other stocks right away because of 
the delays. Only after the number of “Childbearing Adults” starts decreasing because of 
the decrease in “Children,” does the number of “Seniors” start decreasing.  Also, as the 
delay for a stock becomes longer, the effect is felt later. Therefore, the “Seniors” stock 
peaks after the peak of the “Childbearing Adults” stock. 
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Using the stock equilibrium equations from before, one can find the relationships of the 
stocks at equilibrium and show that equilibrium can occur only when the all stocks equal 
zero: 

For the stock of “Children” to be in equilibrium: 
births = maturing 
number of childbearing couples * BABIES PER COUPLE / YEARS AS A 

CHILDBEARING ADULT = Children / YEARS AS A CHILD 
(Childbearing Adults / 2)*1 / 25 = Children / 20 
Childbearing Adults / 50 = Children / 20 

For the stock of “Childbearing Adults” to be in equilibrium: 
maturing = aging 
Children / YEARS AS A CHILD = Childbearing Adults / YEARS AS A 

CHILDBEARING ADULT 
Children/20=Childbearing Adults / 25 

For the stock of “Seniors” to be in equilibrium: 
aging = deaths 
Childbearing Adults / YEARS AS A CHILDBEARING ADULT = Seniors / YEARS 

AS A SENIOR 
Childbearing Adults / 25 = Seniors / 30 

One can see that the equilibrium equations for “Children” and for “Childbearing Adults” 
cannot hold true at the same time. The equilibrium equation for “Children” states that for 
every 20 “Childbearing Adults” there are 50 “Children,” while the equilibrium equation 
for “Childbearing Adults” states that for every 20 “Childbearing Adults” there are 25 
Children. Both equations only hold true when the value of both stocks is zero, which 
implies that the equilibrium value of the “Seniors” stock must also be zero. 

G. Imagine a small village in Bangladesh. A population of 3000 people is also initially 
evenly distributed between children aged 0 to 20 years, child-bearing adults aged 20 to 
45 years, and seniors aged 45 to 75 years. In this village, however, each couple has four 
children. 

Change the original population model to represent the new scenario. What happens to 
the population distribution now? Draw reference modes for each stock. Then simulate 
the model over 100 years. In your assignment solutions document, include graphs of the 
behavior of all stocks and of total population. Did the model generate the behavior you 
predicted? Why or why not? Can you foresee any problems in Bangladesh that would be 
caused by the behavior you observed? 

Model behavior in the “Bangladesh” scenario: 
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Population groups in Bangladesh

8,000 

4,000 

0 
0  25  50  75 100 

Years 

Children : bangladesh person 
Childbearing Adults : bangladesh person 
Seniors : bangladesh person 

Total population in Bangladesh 
20,000 

10,000 

0 
0  25  50  75 100 

Years 

total population : bangladesh person 

Because the number of “BABIES PER COUPLE” is 4, it is easy to see that the system 
exhibits exponential growth. It is interesting to note, however, that the “Children” stock 
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has the sharpest growth, followed by the “Childbearing Adults” stock, and then the 
“Seniors” stock.  Again, this effect is produced by the delays in the system. 

Many problems could be caused by such explosive population growth. Depletion of 
resources, overcrowding, and pollution are just some of them. These factors will slow 
down the exponential growth and cause the population to stabilize at some equilibrium 
point by increasing the death rate. Social pressure may cause the birth rate to decrease 
before these natural factors increase the death rate as a population control measure. 

H. Humanitarian envoys attempt to convince the couples in the small village in 
Bangladesh to reduce the number of children they have. Assume that for some reason the 
villagers decide to comply with the envoys’ request.  Starting in year 50, couples go from 
having 4 children to having 2 children each. 

Change the original population model to represent the new scenario. What happens to 
the population distribution now? Draw reference modes for each stock. Then simulate 
the model over 100 years. In your assignment solutions document, include graphs of the 
behavior of all stocks and of total population. Did the model generate the behavior you 
predicted? Why or why not? How could a system dynamics perspective help in 
proposing recommendations for developing countries with high birth rates? 

To model the change in the number of “BABIES PER COUPLE,” the equation should be 
modified to: 

BABIES PER COUPLE = INITIAL BABIES PER COUPLE + STEP (CHANGE IN 
BABIES PER COUPLE, TIME OF CHANGE) 

where: 

INITIAL BABIES PER COUPLE = 4 
Units: person/couple 
The initial number of babies per couple in Bangladesh. 

CHANGE IN BABIES PER COUPLE = –2 
Units: person/couple 
The change in the number of babies per couple resulting from the efforts of 
humanitarian envoys. 

TIME OF CHANGE = 50 
Units: year 
Time at which the change in the number of babies per couple occurs. 

Model behavior for the “Bangladesh – birth control” scenario: 
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Population groups in Bangladesh - birth control

4,000 
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Children : bangladesh - birth control person 
Childbearing Adults : bangladesh - birth control person

Seniors : bangladesh - birth control person


Total population in Bangladesh - birth control 
10,000 

5,000 
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0  25  50  75 100 
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total population : bangladesh - birth control person 

The behavior of all population groups and of “total population” shifts from exponential to 
asymptotic in year 50. Up to year 50, the behavior is the same as in part G (where the 
number of “BABIES PER COUPLE” was 4).  After year 50, the behavior has the same 
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shape as in part A (where the number of “BABIES PER COUPLE” was 2).  The envoys’ 
recommendation was effective in controlling population growth. 

It is, however, not obvious that the population would continue to increase even after the 
population-control measures were set in place. Even though the birth rate was reduced to 
two people (one couple) having two children after the 50th year, the number of 
“Childbearing Adults” and “Seniors,” as well as the “total population” continued to grow. 
The growth continues because of the delays in the system. Babies born before the 50th 
year will still grow up, increasing the stocks of adults and seniors. Therefore, for the 
time of an average lifespan, about 75 years, the population continues to grow. 

This problem is similar to the “aging population” situation that many developed countries 
are starting to face now. Although their birth rates have been low for the past few 
decades, the fraction of their populations that are comprised of seniors has been 
increasing. This situation is worsened by the fact that the number of babies per couple in 
most countries is still a little above 2. This shift in population demographics tends to 
pose huge problems for Medicare and social security programs. 

System dynamics tools can help determine important factors such as how many years it 
will take before the population halves, or what needs to be the number of “BABIES PER 
COUPLE” allowed in order to control the population by a certain date. Even the 
awareness of many of these counter-intuitive behaviors of relatively simple systems helps 
us to make better decisions because we know that such unexpected things can happen and 
we are more careful and consider non-obvious results. Implementing these policies, 
however, is another story. 
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