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Guided Study Program in System Dynamics 
System Dynamics in Education Project


System Dynamics Group

MIT Sloan School of Management1


Solutions to Assignment #7 
Friday, November 13, 1998 

Reading Assignment: 

Please read the following: 
• Collected Papers of Jay W. Forrester:2  “Market Growth as Influenced by Capital 

Investment” 
•	 Vensim PLE User’s Guide: Section 7: Building a Function with Lookups (pp. 65 ­

80) 

Please refer to Road Maps 3:  A Guide to Learning System Dynamics (D-4503-4) and 
read the following. 
•	 Study Notes in System Dynamics,3 by Michael Goodman: Section 3.12 

Exercises: 

1.	 Market Growth as Influenced by Capital Investment 

A. This paper by Prof. Forrester presents the “Market Growth Model” as an example of 
modeling a complex system. The first several sections of the paper describe the structure 
of systems in terms of feedback loops and levels and rates. Read these sections carefully 
because they contain guidelines that will be useful to you when you build your own 
models. 

The paper then proceeds to build the market growth model. You do not need to be able to 
build the model on your own. You should, however, try to understand the model 
structure, and how the structure creates the behavior generated by the model. Pay close 
attention to the table functions (multipliers) in the model. In this assignment, you will in 

1 Copyright © 1998 by the Massachusetts Institute of Technology. Permission granted to distribute for

non-commercial educational purposes.

2 Forrester, Jay W., 1975. Collected Papers of Jay W. Forrester, Waltham, MA: Pegasus Communications.

284 pp.

3 Goodman, Michael R., 1974. Study Notes in System Dynamics, Waltham, MA: Pegasus Communications.

388 pp.
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fact build a part of the market growth model, and you will learn how to create such table 
functions in Vensim PLE. In later assignments, you will eventually build the full model. 

B. In the section “Capital Investment,” Prof. Forrester describes the dynamics of 
changing the delivery delay goal of the company. Such behavior is often referred to as 
“eroding goals.” 

Please give two examples of systems in which goals are constantly readjusted to match 
actual performance, and describe the behavior of those systems. 

Teaching can sometimes become an example of a system in which goals are 
constantly readjusted to match actual performance. When a teacher encounters a group 
of low-achievers with high failure levels, one way of helping the students is to lower the 
academic goals. Very often, as the pressure on them lowers, the students relax. The less 
the students are expected to learn, the less they exert themselves, and the less they learn, 
so goals are once again re-assessed and lowered even more, etc. 

Project management identifies various planned activities that are to be performed 
in order to successfully introduce a new product on time. This goal (planned activities on 
the critical path) is constantly readjusted to ensure the launch date is met. Decisions are 
made to either shorten or eliminate planned activities, which increases the risk associated 
with the new product introduction. 

An example of drifting goals is the system of cleaning up after our dog. The 
stock is the number of piles in the yard. The stock is increased by a constant rate, 
“deposits,” and is drained by the cleanup rate.  Our children take turns performing the 
duty, and they attempt to meet the goal of zero piles after each pile patrol. The cleanup 
rate is defined by the fraction picked up each week. Unfortunately for those of us who 
like to sit outside, the children have been allowing the goal of zero piles to drift upwards 
(thereby allowing something else to drift upwards, too!). The net outcome is that the 
number of piles in the yard has been growing. 

On August 20, 1998, our newspaper (The Oregonian) printed a story on the front 
page about “Worsening traffic just up the road, new analysis says.”  The article says that 
with the problems of increasing traffic, population, road maintenance costs, etc. they will 
“redefine” what congestion is in the area.  It goes on to say “…  Metro and local 
governments have given up on the idea of trying to eliminate congestion in every part of 
the region.”  The analysis showed that reducing congestion to a level of service “D” 
(heavy but free-flowing with freeway speeds of 45 to 55 mph) would cost $13.5 billion 
over a period of 20 years. The next level of service is an “E” (cars would average 35 to 
45 mph during busy travel times) with a cost of only $3.5 billion. “The new strategy 
assumes that people will tolerate peak-hour congestion in some areas…  ” 

This is an interesting eroding goal. It will cost too much to have “no” congestion, 
so if they redefine the word, we will be able to tolerate the inevitable. The goal (old 
definition of congestion) will be readjusted to match what is going to happen traffic-wise 
in this area, and we will be “in balance” again.  What a solution! 
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2. Vensim PLE User’s Manual: Section 7: Building a Function with Lookups 

A. Follow the instructions to build the delivery delay model. In your assignment 
solutions document, please include the model diagram, documented equations, a graph of 
the delivery delay lookup function, and a graph of the behavior of “Backlog.”4  After 
changing the lookup function, submit the new lookup graph, and a graph of behavior of 
“orders” from the two simulations.  Explain how the change in the lookup function 
changed the behavior of “orders.” 

All answers are included in Section 7. Please note that we discourage the use of built-in 
functions, such as the MIN functions used in the equation for “shipments.”  Instead, a 
modeler should find better ways of achieving the same effect using simple (and usually 
more realistic) formulations. Lookup functions are often used in such cases. Later 
assignments will give you practice with this particular use of lookup functions. 

B. The section “Normalizing the Lookup” on page 68 explains that the input and output 
values of a lookup function should be normalized. Explain why you think that 
normalizing the values is important. Give separate reasons for the input and output 
values. 

Events are generally put into perspective and easier to understand when 
juxtaposed with states that come from common experience and are well understood. 
Often it is not a variable’s actual value that matters, but the extent of the deviation or 
separation from a critical state that sets things into motion. For example, by itself, the 
“actual quality” of a product has no meaning.  For the variable to make sense, you need 
to know the scale on which quality is measured. Giving a movie a three-star rating 
means nothing unless you know how many stars the critics would have given a movie 
that they adored, or how they rated another movie that you adored. Similarly, you want 
to know what the actual quality is relative to the expected quality, the desired quality, the 
minimum quality acceptable, or the best possible quality. Any of these values that set a 
scale to serve as a background for the variations in actual quality are called “normal” 
values. 

It is therefore common practice to model the input to a lookup function as a ratio 
of the current value of a variable to its “normal” value.  Such a formulation guarantees 
that the input to the lookup function is dimensionless. 

Once the input is dimensionless, the output must also be dimensionless. The 
lookup function cannot take as its input a dimensionless number, and produce as its 
output a number with units. Whatever units go into the lookup function must come right 
back out. The dimensionless output of the lookup function then multiplies the “normal” 
value of the output variable, thus preserving its units. In addition, the same reasoning for 
using a normalized input also holds for the output. 

4 Please refer to the document “GSP-VensimHelp.pdf” for tips on how to submit graphs of table functions. 
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C. In system dynamics literature, the lookup functions are often called “table 
functions” or “multipliers.”  Why would you use a table function in a model? Describe 
two table functions that you would use in models of your choice. You do not need to 
build the models or the table functions, only describe the system and the table function in 
words. 

Table functions are most often used to model a nonlinear relationship between two 
variables. Nonlinear relationships, such as the effect of delivery delays on orders, would 
be very difficult to model with an equation. An equation that accurately portrays the 
nonlinear relationship would be so complicated that very few people would be able to 
intuitively visualize the function that it represents. Graphical tables are easy to 
conceptualize, understand, and modify. Table functions allow a modeler to specify any 
nonlinear relationship that he believes exists between the two variables. 

A common and simple example of a table function is the “effect of crowding” multiplier 
often used in modeling the death fraction of a rabbit population. The area in which the 
rabbits live can sustain a certain maximum number of rabbits. The input to the “effect of 
crowding” table function is then the ratio of the current rabbit population to the maximum 
sustainable population. When the number of rabbits is low in comparison with the 
maximum sustainable number, the death fraction is equal to its normal value because the 
rabbits are not crowded and do not need to compete for resources such as food or water. 
The table function then outputs the value of 1, and the actual death fraction equals the 
normal death fraction. As the number of rabbits starts to grow, however, crowding 
increases, and some of the rabbits die of starvation. When the number of rabbits reaches 
the maximum sustainable number, the output of the “effect of crowding” multiplier 
should be such that it makes the death fraction equal to the rabbits’ birth fraction, thus 
leading to equilibrium. Hence, the table function would be a curve that increases at an 
increasing rate as the ratio of the rabbit population to the maximum sustainable 
population grows. 

I have used lookup functions to describe nonlinear customer response to price increases 
of a planned new product. Basically, small price increases from the “expected” value 
don’t impact customers as much as larger price increases. Similarly, price reductions 
have a nonlinear effect on the market. The table function was a great way to engage our 
marketing department in the discussion about just what they expected customer response 
would be to price changes for a new product. 

A table function enables a nonlinear relationship between two variables. It is a means to 
introduce nonlinear change into the model. For example, in a model describing the 
impact of overtime (hours worked) on productivity and quality, the results of increased 
hours are nonlinear. At first, productivity increases and quality is relatively unchanged. 
After a certain amount of overtime, productivity begins to fall, and quality problems 
begin to increase. With enough overtime, productivity and quality can fall below the 
levels associated with a 40-hour workweek. Another example is the benefit resulting 
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from practicing a physical activity. If marathon runners increase the length of their runs, 
the impact increases their capacity and ability for some amount, but after they are running 
above a certain amount of miles per week, the training actually becomes detrimental. 
The conditioning of the runners is hurt, and injuries are more likely. 

3.	 Study Notes in System Dynamics, Section 3.12 

A. Build the basic linear pollution model, as shown in Figure 3-17 (a), and make sure 
the model generates the behavior shown in Figure 3-19. 

Answers are in the book. 

B. After reading the description of the nonlinear pollution model, build the complete 
model, as shown in Figure 3-21 (a). Notice, however, that the nonlinear table function 
for “pollution absorption time” shown in Figure 3-20, does not have a normalized 
output.5  Following the instructions from section 7 of the Vensim PLE User’s Manual, 
make sure that the lookup function in your model has normalized input and output values. 
To do this, you will need to define several additional variables, not shown in the model in 
Figure 3-21 (a). The “effect of pollution ratio on absorption time lookup” should look 
the same as the table function in Figure 3-20, and should be dimensionless. This 
variable corresponds to the “effect of delivery delay on orders lookup” in the delivery 
delay model. To help, the equations for the additional variables are given below: 

•	 effect of pollution ratio on absorption time = effect of pollution ratio on absorption 
time lookup (pollution ratio) 
Units: dmnl 
This variable corresponds to the “effect of delivery delay on orders” in the delivery 
delay model. 

•	 pollution absorption time = NORMAL POLLUTION ABSORPTION TIME * effect of 
pollution ratio on absorption time 
Units: year 

•	 NORMAL POLLUTION ABSORPTION TIME = 1 
Units: year 

With the above equations, the model should be dimensionally consistent, and the lookup 
function has normalized input and output values. 

In your assignment solutions document, please include the model diagram, documented 
equations, a graph of the lookup function, and graphs of the behavior of the “normal 
system” and the “overstressed system.” 

5 Also note that the input to the table function in Figure 3-20 should be “POLR pollution ratio,” not “POLR 
pollution rate.” 
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Pollution

pollution
 pollution

generation rate absorption rate 

pollution absorption time 

pollution ratio 

effect of pollution ratio on NORMAL POLLUTION 
pollution absorption time ABSORPTION TIME 

POLLUTION

STANDARD


effect of pollution ratio on

pollution absorption time lookup


Model equations: 

effect of pollution ratio on pollution absorption time = effect of pollution ratio on 
pollution absorption time lookup(pollution ratio) 
Units: dimensionless 
The output of the effect of pollution ratio on pollution absorption time lookup 
function. 

effect of pollution ratio on pollution absorption time lookup ([(0,0)-(80,50)], (0,0.6), 
(1,1), (10,2.5), (20,5), (30,8), (40,11.5), (50,15.5), (60,20), (70,31), (80,50)) 
Units: dimensionless 
The lookup function for the effect of pollution ratio on pollution absorption time. 

NORMAL POLLUTION ABSORPTION TIME = 1 
Units: Year 
The average number of years to absorb a ton of pollutants, when the amount of 
pollution equals the standard amount of pollution. 

Pollution = INTEG (+ pollution generation rate - pollution absorption rate, 0) 
Units: tons 
The amount of pollution in the air. 

pollution absorption rate = Pollution / pollution absorption time 
Units: tons/Year 
The number of tons of pollutants absorbed every year. 

pollution absorption time = NORMAL POLLUTION ABSORPTION TIME * effect of 
pollution ratio on pollution absorption time 
Units: Year 
The average number of years to absorb a ton of pollutants. 
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pollution generation rate = 2 
Units: tons/Year 
The number of tons of pollutants generated every year. 

pollution ratio = Pollution / POLLUTION STANDARD 
Units: dimensionless 
The ratio of the amount of pollution to the standard amount of pollution. 

POLLUTION STANDARD = 1 
Units: tons 
The standard amount of pollution in the air. 

Note that the “effect of pollution ratio on pollution absorption time lookup” function 
should include the value (1,1) to indicate that when “Pollution” equals the “POLLUTION 
STANDARD,” the “pollution absorption time” equals the “NORMAL POLLUTION 
ABSORPTION TIME.” 

Graph of the lookup function: 

Current

effect of pollution ratio on pollution absorption time lookup
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Pollution and pollution generation and absorption rates 

Pollution : Normal 
pollution generation rate : Normal 
pollution absorption rate : Normal 

Years 
tons 

tons/Year 
tons/Year 

Model behavior in the “overstressed system”: 

Pollution and pollution generation and absorption rates


2 tons 
2 tons/Year
2 tons/Year 

0 tons 
0 tons/Year 
0 tons/Year 

0 2.5 5 7.5 10 

80 tons 
10 tons/Year 
10 tons/Year 

0 tons 
0 tons/Year
0 tons/Year 

0 2.5 5 
Years 

7.5 10 

Pollution : Overstressed 
pollution generation rate : Overstressed 
pollution absorption rate : Overstressed 

tons 
tons/Year 
tons/Year 
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4. Independent modeling exercise 

This exercise will develop a simple model of the absorption of CFCs 
(chlorofluorocarbons) in the atmosphere.6 

Some background: 

CFCs are halogenated hydrocarbons that are used extensively as propellants in aerosol 
spray cans, coolants in refrigerators and air conditioners, solvents, and plastic foam 
products such as Styrofoam cups. The usefulness of CFCs lies in their nontoxic and 
nonflammable properties, as well as the ease with which they can be converted from a 
liquid to a gas and vice versa. CFCs became widely used after World War II. 

Although CFCs are very useful in commercial and industrial applications, they pose 
a serious threat to the environment. In the 1970s, scientists discovered that after CFCs 
are released into the atmosphere, they pass through the troposphere and accumulate in 
the stratosphere. In the stratosphere, solar ultraviolet radiation breaks down the CFC 
molecules, releasing their constituent chlorine atoms. These then react with the ozone 
molecules, destroying the ozone layer. 

The stratospheric ozone layer shields living organisms on Earth from the Sun’s 
ultraviolet radiation. The radiation is associated with dangers such as skin cancer, 
cataracts, genetic disease, and weaker immune systems. Because of a growing concern 
over ozone depletion, in the late 1970s the United States, Canada, and the Scandinavian 
countries imposed a ban on the use of CFCs in aerosol-spray dispensers. In 1990, 93 
nations agreed to end production of ozone-depleting chemicals by the end of the century, 
and in 1992, most of those same countries agreed to end their production of CFCs by 
1996. 

This exercise will study how the amount of CFCs in the atmosphere changes as the 
production of CFCs is restricted. When CFCs are released they first ascend into the 
troposphere. After an average of five years, the CFCs migrate to the stratosphere. The 
CFCs reside in the stratosphere on average 55 years before they are destroyed. 

A. The model will contain the elements listed below. Identify each element as either 
stock, flow, or constant, and label its units. For each stock, determine its inflows and 
outflows. 

• time to rise to stratosphere 
• CFC 11 destruction 
• CFC 11 release pattern 
• CFC 11 in stratosphere 
• atmospheric CFC 11 releases 
• lifetime of CFC 11 in stratosphere 
• CFC 11 in troposphere 

6 The CFC model, system description, and data are based on information gathered in Britannica Online, 
Biology: The Unity and Diversity of Life by Starr and Taggart, and materials provided by Ventana Systems. 
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• migration to stratosphere 

Name Type Units 

time to rise to stratosphere constant years 

CFC 11 destruction flow Mkg / year 

CFC 11 release pattern lookup Mkg / year 

CFC 11 in stratosphere stock Mkg 

atmospheric CFC 11 releases flow Mkg / year 

lifetime of CFC 11 in stratosphere constant years 

CFC 11 in troposphere stock Mkg 

migration to stratosphere flow Mkg / year 

B. Using Vensim PLE, combine the elements to represent the structure of the system. In 
your assignment solutions document, please include the model diagram. 

<Time> 

CFC 11 in 
Troposphere 

CFC 11 in 
Stratosphere

atmospheric 
CFC 11 releases 

migration to 
stratosphere 

CFC 11 
destruction 

TIME TO RISE TO LIFETIME OF CFC 11 
CFC 11 release pattern STRATOSPHERE IN STRATOSPHERE 

C. Using the system description and the table provided below, define the equations for 
each flow. Then supply the constants and initial values of the stocks. In your assignment 
solutions document, please include the documented equations and a graph of the lookup 
function. 

Year CFC production (Mkg/year) 

1940 0 

1945 0 

1950 5 

1955 20 

1960 40 
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1965 110 

1970 200 

1975 310 

1980 250 

1985 280 

1990 220 

1995 100 

2000 0 

2005-2140 0 

Hint: To define the rate at which CFC 11 is released into the atmosphere, you will need 
to use a lookup function. The input to the lookup will be the current time; in this case, 
you do not need to make the input dimensionless. You will need to use the shadow 
variable tool to add <Time> to the model diagram. To use the shadow variable tool, click 
once on the shadow variable icon, position the pointer on the diagram, and click once. 
You will then be able to choose “Time” from the list of all variables used in the model. 

Model equations: 

atmospheric CFC 11 releases =CFC 11 release pattern (Time) 
Units: mkg/Year 
The amount of CFC 11 released into the atmosphere every year. 

CFC 11 destruction = CFC 11 in Stratosphere / LIFETIME OF CFC 11 IN 
STRATOSPHERE 
Units: mkg/Year 
The amount of CFC 11 destroyed every year. 

CFC 11 in Stratosphere = INTEG (+migration to stratosphere - CFC 11 destruction, 0) 
Units: mkg 
The amount of CFC 11 in the stratosphere. 

CFC 11 in Troposphere = INTEG (atmospheric CFC 11 releases - migration to 
stratosphere, 0) 
Units: mkg 
The amount of CFC 11 in the troposphere. 

CFC 11 release pattern ([(1940,0) - (2140,400)], (1940,0), (1945,0), (1950,5), (1955,20), 
(1960,40), (1965,110), (1970,200), (1975,310), (1980,250), (1985,280), 
(1990,220), (1995,100), (2000,0), (2140,0)) 
Units: mkg/Year 
The release pattern of CFC 11, based on historical data. 
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LIFETIME OF CFC 11 IN STRATOSPHERE =55 
Units: Year 
The average time CFC 11 stays in the stratosphere before destruction. 

migration to stratosphere = CFC 11 in Troposphere / TIME TO RISE TO 
STRATOSPHERE 
Units: mkg/Year 
The amount of CFC 11 migrating from the troposphere to the stratosphere every 
year. 

TIME TO RISE TO STRATOSPHERE = 5 
Units: Year 
The average time for CFC 11 to rise from the troposphere to the stratosphere. 

The lookup function for CFC 11 release pattern: 

CFCs 
CFC 11 release pattern 

1940 1990 2040 2090 2140 
-X­

D. Before you simulate the model, draw reference modes for the stocks.  You do not need 
to include these in your assignment solutions document, but you do need to draw them in 
order to be able to answer the next question. 

E. Simulate the model from 1940 to 2140. In your assignment solutions document, 
please include graphs of the behavior of all stocks. Did the model generate the behavior 
you predicted? Why or why not? 

400 

300 

200 

100 

0 
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CFC 11 in Troposphere and CFC 11 in Stratosphere 

2,000
6,000 

mkg
mkg 

1,000
3,000 

mkg
mkg 

0
0 

mkg
mkg 

1940 1990 2040 2090 2140 
Year 

CFC 11 in Troposphere : CFCs mkg 
CFC 11 in Stratosphere : CFCs mkg 

Immediately after the production of CFCs begins, the amount of “CFC 11 in 
Troposphere” starts to rise.  Because it takes on average five years for CFC 11 to migrate 
into the stratosphere, the amount of “CFC 11 in Stratosphere” starts rising only after a 
delay. As the production of CFCs increases, both stocks continue to rise. Because the 
average “LIFETIME OF CFC 11 IN STRATOSPHERE” is longer than the “TIME TO 
RISE TO STRATOSPHERE,” the stock “CFC 11 in Stratosphere” rises to a higher value 
than the stock “CFC 11 in Troposphere.” 

Then, as the production of CFCs is reduced, the amount of “CFC 11 in Troposphere” 
starts to decline. Because of the very long “LIFETIME OF CFC 11 IN 
STRATOSPHERE,” however, the amount of “CFC 11 in Stratosphere” continues to rise. 
After the production of CFCs stops in year 2000, the stock “CFC 11 in Troposphere” 
soon decreases to 0. The stock “CFC 11 in Stratosphere,” however, declines much more 
slowly, and will not even reach 0 by the end of the simulation, 2140, more than a hundred 
years after the production of CFCs ceased. 

F. What would have happened if, in 1990, all countries had agreed to end production of 
CFCs immediately, instead of by the end of the century? Change the model to reflect the 
new scenario. Draw reference modes for each stock. Create a new dataset and simulate 
the model. In your assignment solutions document, submit graphs that contrast the 
behavior of the stocks from the two simulations. Did the model generate the behavior 
you predicted in the reference modes? Why or why not? 
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Contrast of behaviors from the base run and part F 
2,000 mkg 
6,000 mkg 
2,000 mkg 
6,000 mkg 

0 mkg 
0 mkg 
0 mkg 
0 mkg 

1940 1990 2040 
Year 

2090 2140 

CFC 11 in Troposphere : CFCs 
CFC 11 in Stratosphere : CFCs 
CFC 11 in Troposphere : partF 
CFC 11 in Stratosphere : partF 

mkg 
mkg 
mkg 
mkg 

If the production of CFCs had ended in 1990, the stock “CFC 11 in Troposphere” would 
have declined faster because its inflow would have been reduced to zero earlier. The 
stock “CFC 11 in Stratosphere” would only have risen to a lower value and would have 
started declining sooner. Even in this scenario, however, there would still be a significant 
amount of “CFC 11 in Stratosphere” in 2140. 

G. Return to the original data for CFC production. This time, however, imagine that in 
the year 2000, scientists develop a chemical that, when released into the stratosphere, 
decreases the average lifetime of CFCs from 55 to 20 years. Change the model to reflect 
this scenario and draw reference modes. Create a new dataset and simulate the model. 
Submit graphs that contrast this simulation with the original one. Did the model 
generate the behavior you predicted in the reference modes? Why or why not? 
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Contrast of behaviors from the base run and part G 
2,000 mkg

6,000 mkg

2,000 mkg

6,000 mkg


0 mkg

0 mkg

0 mkg

0 mkg


1940 1990	 2040 2090 2140 
Year 

CFC 11 in Troposphere : CFCs mkg 
CFC 11 in Stratosphere : CFCs mkg 
CFC 11 in Troposphere : partG mkg 
CFC 11 in Stratosphere : partG mkg 

If in year 2000, scientists discover a way to reduce the “LIFETIME OF CFC 11 IN 
STRATOSPHERE,” the behavior of “CFC 11 in Troposphere” would, of course, remain 
unchanged. Because “CFC 11 in Stratosphere” would be destroyed faster after year 
2000, however, the behavior of “CFC 11 in Stratosphere” would change.  Starting in 
2000, the outflow “CFC 11 destruction” would be higher, so the stock “CFC 11 in 
Stratosphere” would decline faster.  Hence, the stock would approach zero sooner, and by 
2140, there would be almost no CFCs left in the stratosphere. 

H. If in 1990, you were an advisor to the worldwide commission on CFC production, 
what policy would you recommend? Why? 

The best policy that should be recommended is to stop CFC production as soon as 
possible because of the delays in obtaining results, mainly due to the long lifetime of 
CFCs in the stratosphere. With historical data as used in the first simulation, it will take 
approximately thirty years (around year 2020) to return to the situation in 1990 for the 
CFC level in the stratosphere. If CFC production halts completely in 1990, it will take 
only 13 years to reach again the 1990 values for CFC in the stratosphere. Even in this 
optimal case, however, it should be emphasized that although CFC production will be 
zero beginning in 1990, CFC levels in the stratosphere will still go on growing for more 
than a decade. 
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From the above graphs, it is clear that shorter lifetime of CFCs gives better results—  
CFCs disappear faster and to greater extent. 

If I were an advisor to the worldwide commission on CFC production in 1990, I would 
recommend both to stop CFC production and scientific research that could shorten 
lifetime of CFC in stratosphere. There are several reasons: 
• If countries are willing to stop production in year 1990 it should be done as soon as 
possible because they can change their mind after ten years (there could be major changes 
in the next ten years). 
• We can hope that scientists can find a way to shorten the life of CFC production, but 
there is no guarantee that our expectations will be fulfilled. 

I think that such research is necessary, but is also dangerous. If scientists find a way to 
shorten the lifetime of CFCs in the stratosphere, this will be justification for producers to 
stop production of CFC later (maybe in year 2200). Producers can even hope that 
scientists will find a way to immediately destroy CFCs in stratosphere, and they can fund 
such research, but I think that this will cause some additional problems that we cannot 
imagine. 

Furthermore, in our hurry to solve the CFC problem, we may create negative side effects 
by using the new chemical. 
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