17 Interpolation

Recommended Problems

<u>P17.1</u>

Suppose we have the system in Figures P17.1-1 and P17.1-2, in which x(t) is sampled with an impulse train. Sketch $x_p(t)$, y(t), and w(t).

P17.2

Consider the signal $x(t) = \delta(t-1) + \frac{1}{2}\delta(t-2)$, which we would like to interpolate using the system given in Figure P17.2-1.

For the following choices of h(t), sketch y(t).

P17.3

Consider the system in Figure P17.3-1, with p(t) an impulse train with period T.

- (a) Sketch $P(\omega)$ and $X_p(\omega)$, assuming that no aliasing is present. What is the relation between T and the highest frequency present in $X(\omega)$ to guarantee that no aliasing occurs?
- (b) Consider recovering x(t) from $x_p(t)$, assuming that no aliasing has occurred. For example, assume that $T = 2\pi/4\omega_m$. We know that x(t) is recovered by interpolating $x_p(t)$, as shown in Figure P17.3-2.

Is the specification of h(t) unique so that x(t) can be exactly recovered from $x_p(t)$? Why not?

(c) Using the convolution integral, show that if the original sampling period was T and if the filter is an ideal lowpass filter with cutoff ω_c , then the recovered signal $x_r(t)$ is

$$x_r(t) = \frac{T\omega_c}{\pi} \sum_{n=-\infty}^{\infty} x(nT) \operatorname{sinc} \frac{\omega_c(t-nT)}{\pi}$$

P17.4

In the system in Figure P17.4, p(t) is an impulse train with period Δ , and the impulse response g(t) is as indicated. Determine $H(\omega)$ so that y(t) = x(t), assuming that no aliasing has occurred.

<u>P17.5</u>

Figure P17.5-1 shows the overall system for filtering a continuous-time signal using a discrete-time filter. If $X_c(\omega)$ and $H_1(\Omega)$ are as shown in Figure P17.5-2, with 1/T = 20 kHz, sketch $X_p(\omega)$, $X(\Omega)$, $Y(\Omega)$, and $Y_c(\omega)$.

Optional Problems

P17.6

We consider a sequence x[n] to which discrete-time sampling, as illustrated in Figure 8.32 of the text, has been applied. We assume that the conditions of the discrete-time sampling theorem are satisfied; that is, $\Omega_s > 2\Omega_M$, where Ω_s is the sampling frequency and $X(\Omega) = 0$, $\Omega_M < |\Omega| \le \pi$. The original sequence x[n] is then recoverable from $x_p[n]$ by ideal lowpass filtering, which, as discussed in Section 8.6 of the text, corresponds to bandlimited interpolation.

The ZOH represents an approximate interpolation whereby each sample value is repeated (or held) N - 1 successive times, as illustrated in Figure P17.6-1 for N = 3. The FOH represents a linear interpolation between samples, as illustrated in Figure P17.6-1.

(a) The ZOH can be represented as an interpolation in the form of eq. (8.51) of the text (page 545) and the system in Figure P17.6-2. Determine and sketch $h_0[n]$ for the general case of a sampling period N.

(b) x[n] can be exactly recovered from the ZOH sequence $x_0[n]$ using an appropriate LTI filter $H(\Omega)$, as indicated in Figure P17.6-3. Determine $H(\Omega)$.

(c) The FOH (linear interpolation) can be represented as an interpolation in the form of eq. (8.51) of the text and, equivalently, the system in Figure P17.6-4. Determine and sketch $h_1[n]$ for the general case of a sampling period N.

(d) x[n] can be exactly recovered from the FOH sequence $x_1[n]$ using an appropriate LTI filter with frequency response $H(\Omega)$, as illustrated in Figure P17.6-5. Determine $H(\Omega)$.

<u>P17.7</u>

Figure P17.7 shows a system consisting of a continuous-time linear time-invariant system followed by a sampler, conversion to a sequence, and a discrete-time linear time-invariant system. The continuous-time LTI system is causal and satisfies the LCCDE:

$$\frac{dy_c(t)}{dt} + y_c(t) = x_c(t)$$

The input $x_c(t)$ is a unit impulse $\delta(t)$.

- (a) Determine $y_c(t)$.
- (b) Determine the frequency response $H(\Omega)$ and the impulse h[n] such that $w[n] = \delta[n]$.

<u>P17.8</u>

Consider a signal x(t) that is nonzero only in an interval [-T, T]. This problem deals with the sampling of the Fourier transform of x(t).

(a) Suppose that we consider sampling the Fourier transform with an impulse train

$$P(\omega) = \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_s),$$

as shown in Figure P17.8-1.

Sketch $X_p(\omega)$ if $X(\omega)$ is as given in Figure P17.8-2.

- (b) Determine an expression for $x_p(t)$, the inverse Fourier transform of $X_p(\omega)$. How does $x_p(t)$ relate to x(t)?
- (c) Determine a relation between ω_s and T such that x(t) is recoverable.
- (d) Assuming that ω_s satisfies the condition in part (c), how is x(t) recovered from $x_p(t)$?

MIT OpenCourseWare http://ocw.mit.edu

Resource: Signals and Systems Professor Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.