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Signals and Systems:
Part I

In this lecture, we consider a number of basic signals that will be important
building blocks later in the course. Specifically, we discuss both continuous-
time and discrete-time sinusoidal signals as well as real and complex expo-
nentials.

Sinusoidal signals for both continuous time and discrete time will be-
come important building blocks for more general signals, and the representa-
tion using sinusoidal signals will lead to a very powerful set of ideas for repre-
senting signals and for analyzing an important class of systems. We consider a
number of distinctions between continuous-time and discrete-time sinusoidal
signals. For example, continuous-time sinusoids are always periodic. Further-
more, a time shift corresponds to a phase change and vice versa. Finally, if we
consider the family of continuous-time sinusoids of the form A cos wot for dif-
ferent values of wo, the corresponding signals are distinct. The situation is
considerably different for discrete-time sinusoids. Not all discrete-time sinu-
soids are periodic. Furthermore, while a time shift can be related to a change
in phase, changing the phase cannot necessarily be associated with a simple
time shift for discrete-time sinusoids. Finally, as the parameter flo is varied in
the discrete-time sinusoidal sequence Acos(flon + 4), two sequences for
which the frequency flo differs by an integer multiple of 27r are in fact indistin-
guishable.

Another important class of signals is exponential signals. In continuous
time, real exponentials are typically expressed in the form cet, whereas in dis-
crete time they are typically expressed in the form ca".

A third important class of signals discussed in this lecture is continuous-
time and discrete-time complex exponentials. In both cases the complex ex-
ponential can be expressed through Euler's relation in the form of a real and
an imaginary part, both of which are sinusoidal with a phase difference of 'N/2
and with an envelope that is a real exponential. When the magnitude of the
complex exponential is a constant, then the real and imaginary parts neither
grow nor decay with time; in other words, they are purely sinusoidal. In this
case for continuous time, the complex exponential is periodic. For discrete
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time the complex exponential may or may not be periodic depending on
whether the sinusoidal real and imaginary components are periodic.

In addition to the basic signals discussed in this lecture, a number of ad-
ditional signals play an important role as building blocks. These are intro-

duced in Lecture 3.

Suggested Reading
Section 2.2, Transformations of the Independent Variable, pages 12-16

Section 2.3.1, Continuous-Time Complex Exponential and Sinusoidal Signals,
pages 17-22

Section 2.4.2, Discrete-Time Complex Exponential and Sinusoidal Signals,
pages 27-31

Section 2.4.3, Periodicity Properties of Discrete-Time Complex Exponentials,
pages 31-35
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Illustration of the
signal A cos wot as an
even signal.

x(t) = A cos wo t

A

Periodic:

Even:

2r

0 
WO A

x(t) = x(-t)
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Illustration of the
signal A sin wot as an
odd signal.

A cos (w t - -ff)

- x(t) = A sin wot

A cos [ w(t- )]

Periodic: x(t) = x(t + TO)

x(t) =-x(-t)Odd:

-----------
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Time Shift => Phase Change

= A cos [Mnn + E20n0]

TRANSPARENCY
2.5
Illustration of
discrete-time
sinusoidal signals.

TRANSPARENCY
2.6
Relationship between
a time shift and a
phase change for
discrete-time
sinusoidal signals. In
discrete time, a time
shift always implies a
phase change.

A cos [920(n + no)]
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2.7
The sequence
A cos flon illustrating
the symmetry of an
even sequence.

p = 0 x[n] =A cos 0 n

.00

even: x[n] = x[-n]
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The sequence
A sin flon illustrating
the antisymmetric
property of an odd
sequence.

A cos (En - )

x[n] = A sin E2 n

A cos [W2(n - no)]

n =I
0

000

odd: x[n] = -x [-n]
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Time Shift => Phase Change

A cos [20(n + no)]

Time Shift

= A cos [Mon + 9 0n0 ]

<=

A cos [92 0 (n + no)] =

Phase Change

A cos [2 n ++J
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For a discrete-time
sinusoidal sequence a
time shift always
implies a change in
phase, but a change in
phase might not imply
a time shift.

x[n] = A cos (Wn + #)

Periodic?

x[n] = x [n + N]

A cos [20(n + N) + #]

smallest integer N

= A cos [20

= period

n + 2 N + #]

integer multiple of 27r ?

Periodic = > 920 N 27rm

27rm
0

N,m must be integers

smallest N (if any) = period

TRANSPARENCY
2.10
The requirement onne
for a discrete-time
sinusoidal signal to be
periodic.
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Several sinusoidal
sequences illustrating
the issue of
periodicity.
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Some important
distinctions between
continuous-time and
discrete-time
sinusoidal signals.

A cos(oot + #)

Distinct signals for distinct

values of wo

Periodic for any choice of o

A cos(E 0n + G)

Identical signals for values of

Eo separated by 27r

Periodic only if

_ 21rm
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SINUSOIDAL SIGNALS AT DISTINCT FREQUENCIES:

Continuous time:
x 1 (t) = A cos(w 1 t +)

x 2 (t) = A cos (w 2t +)

Discrete time:
x, [n] = A cos [M, n + ]

x2 [n] = A cos[2 2n + #]

If w2 1

Then x2 (t) # x1 (t)

If 22 1 + 27rm

Then x2 [n] = x, [n]

TRANSPARENCY
2.13
Continuous-time
sinusoidal signals are
distinct at distinct
frequencies. Discrete-
time sinusoidal signals
are distinct only over a
frequency range of 2,.

REAL EXPONENTIAL: CONTINUOUS-TIME

x(t) = Ceat

C and a are real numbers

X (t)

C

a >0

a <0

TRANSPARENCY
2.14
Illustration of
continuous-time real
exponential signals.

Time Shift <=> Scale Change

Cea(t + to) = Ceato eat
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2.15
Illustration of
discrete-time real
exponential
sequences.

REAL EXPONENTIAL: DISCRETE-TIME

x[n] = Ceon = Can

C,a are real numbers

a <

n a l 

TRANSPARENCY
2.16
Continuous-time
complex exponential
signals and their
relationship to
sinusoidal signals.

COMPLEX EXPONENTIAL: CONTINUOUS-TIME

x(t) = Ceat

C and a are complex numbers

C= ICI ej6

a = r + jo

x(t) = 0 e jo e (r + jcoo)t

= ICI ert ej(wot + 0)

Euler's Relation: cos( 0t + 0) + j sin(w ot + 0) = ej(wot + 0)

x(t) = IC i ert cos(cot + 0) + jl |C ert sin(wot+ 0)

L a >0

a>0

n Jal <1
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TRANSPARENCY
2.17
Sinusoidal signals with
exponentially growing
and exponentially
decaying envelopes.

COMPLEX EXPONENTIAL: DISCRETE-TIME

x[n] = Can

C and a are complex numbers

C = ICI eji

a= 1al ei

x [n] = C e j (lal ejo) n

= IC 1al n e j( on + 0)

Euler's Relation: cos(2 0n + 0) + j sin(&20 n + 0)

x[n] = ICI lal n cos(92on + 0) + j IC I|al n sin(92on + 0)

|al = 1 => sinusoidal real and imaginary parts

Ce jon periodic ?

TRANSPARENCY
2.18
Discrete-time complex
exponential signals
and their relationship
to sinusoidal signals.
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2.19
Sinusoidal sequences
with geometrically
growing and
geometrically
decaying envelopes.

|al > I

lal <I
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