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Convolution

In Lecture 3 we introduced and defined a variety of system properties to
which we will make frequent reference throughout the course. Of particular
importance are the properties of linearity and time invariance, both because
systems with these properties represent a very broad and useful class and be-
cause with just these two properties it is possible to develop some extremely
powerful tools for system analysis and design.

A linear system has the property that the response to a linear combina-
tion of inputs is the same linear combination of the individual responses. The
property of time invariance states that, in effect, the system is not sensitive to
the time origin. More specifically, if the input is shifted in time by some
amount, then the output is simply shifted by the same amount.

The importance of linearity derives from the basic notion that for a linear
system if the system inputs can be decomposed as a linear combination of
some basic inputs and the system response is known for each of the basic in-
puts, then the response can be constructed as the same linear combination of
the responses to each of the basic inputs. Signals (or functions) can be decom-
posed as a linear combination of basic signals in a wide variety of ways. For
example, we might consider a Taylor series expansion that expresses a func-
tion in polynomial form. However, in the context of our treatment of signals
and systems, it is particularly important to choose the basic signals in the ex-
pansion so that in some sense the response is easy to compute. For systems
that are both linear and time-invariant, there are two particularly useful
choices for these basic signals: delayed impulses and complex exponentials.
In this lecture we develop in detail the representation of both continuous-
time and discrete-time signals as a linear combination of delayed impulses
and the consequences for representing linear, time-invariant systems. The re-
sulting representation is referred to as convolution. Later in this series of lec-
tures we develop in detail the decomposition of signals as linear combina-
tions of complex exponentials (referred to as Fourier analysis) and the
consequence of that representation for linear, time-invariant systems.

In developing convolution in this lecture we begin with the representa-
tion of discrete-time signals and linear combinations of delayed impulses. As
we discuss, since arbitrary sequences can be expressed as linear combina-
tions of delayed impulses, the output for linear, time-invariant systems can be
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expressed as the same linear combination of the system response to a delayed
impulse. Specifically, because of time invariance, once the response to one

impulse at any time position is known, then the response to an impulse at any
other arbitrary time position is also known.

In developing convolution for continuous time, the procedure is much

the same as in discrete time although in the continuous-time case the signal is

represented first as a linear combination of narrow rectangles (basically a
staircase approximation to the time function). As the width of these rectan-

gles becomes infinitesimally small, they behave like impulses. The superposi-
tion of these rectangles to form the original time function in its limiting form
becomes an integral, and the representation of the output of a linear, time-in-

variant system as a linear combination of delayed impulse responses also be-

comes an integral. The resulting integral is referred to as the convolution in-

tegral and is similar in its properties to the convolution sum for discrete-time

signals and systems. A number of the important properties of convolution that

have interpretations and consequences for linear, time-invariant systems are

developed in Lecture 5. In the current lecture, we focus on some examples of

the evaluation of the convolution sum and the convolution integral.

Suggested Reading
Section 3.0, Introduction, pages 69-70

Section 3.1, The Representation of Signals in Terms of Impulses, pages 70-75

Section 3.2, Discrete-Time LTI Systems: The Convolution Sum, pages 75-84

Section 3.3, Continuous-Time LTI Systems: The Convolution Integral, pages
88 to mid-90



c-7T:

X1I

Tkiv%

\ r - L ,tY%3

- InAvr

- causal

'4s~w

STM rEcY:
% clecorpose pt 5 pwL

invo GL Lineer comet'ncL4Zo1.

o C 0'sM baSic V Sina

-tha. respolase eqs to

LT I SWs ens-

e g Convo + Co,

x[-I] x[0] 1 x[2]

-l IOJ fr 2
x[0]

x[O]8a[n]
-.- e--.-0- n

-1 0 I2

X[1] x[1]8[n-1]

-1 0 I 2

x[-I]8[n+1]0-0 -- *- n

-1 0 I 2

X[-] x [-2]8[n +2]

0--0-0 n
-1 0 1 2

x[o]8[n]+x(I] 8[n -1]

+ x [-I]8[n+ ]+.--
+X kr

=2 x[k]8[n-k]
k= -c

TRANSPARENCY
4.1
A general discrete-
time signal expressed
as a superposition of
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impulses.
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The convolution sum
for linear, time-
invariant discrete-time
systems expressing
the system output as a
weighted sum of
delayed unit impulse
responses.
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One interpretation of
the convolution sum
for an LTI system.
Each individual
sequence value can be
viewed as triggering a
response; all the
responses are added
to form the total
output.
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As the rectangular
pulses in Trans-
parency 4.4 become
increasingly narrow,
the representation
approaches an
integral, often referred
to as the sifting
integral.
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Derivation of the
convolution integral
representation for
continuous-time LTI
systems.
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Interpretation of the
convolution integral as
a superposition of the
responses from each
of the rectangular
pulses in the
representation of the
input.
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Comparison of the
convolution sum for
discrete-time LTI
systems and the
convolution integral
for continuous-time
LTI systems.
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Evaluation of the
convolution sum for
an input that is a unit
step and a system
impulse response that
is a decaying
exponential for n > 0.
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Evaluation of the
convolution integral
for an input that is a
unit step and a system
impulse response that
is a decaying
exponential for t > 0.
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