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Continuous-Time
Fourier Series

In representing and analyzing linear, time-invariant systems, our basic ap-
proach has been to decompose the system inputs into a linear combination of
basic signals and exploit the fact that for a linear system the response is the
same linear combination of the responses to the basic inputs. The convolution
sum and convolution integral grew out of a particular choice for the basic sig-
nals in terms of which we carried out the decomposition, specifically delayed
unit impulses. This choice has the advantage that for systems which are time-
invariant in addition to being linear, once the response to an impulse at one
time position is known, then the response is known at all time positions.

In this lecture, we begin the discussion of the representation of signals in
terms of a different set of basic inputs-complex exponentials with unity
magnitude. For periodic signals, a decomposition in this form is referred to as
the Fourier series, and for aperiodic signals it becomes the Fourier transform.
In Lectures 20-22 this representation will be generalized to the Laplace trans-
form for continuous time and the z-transform for discrete time.

Complex exponentials as basic building blocks for representing the input
and output of LTI systems have a considerably different motivation than the
use of impulses. Complex exponentials are eigenfunctions of LTI systems;
that is, the response of an LTI system to any complex exponential signal is
simply a scaled replica of that signal. Consequently, if the input to an LTI sys-
tem is represented as a linear combination of complex exponentials, then the
effect of the system can be described simply in terms of a weighting applied to
each coefficient in that representation. This very important and elegant rela-
tionship between LTI systems and complex exponentials leads to some ex-
tremely powerful concepts and results.

Before capitalizing on this property of complex exponentials in relation
to LTI systems, we must first address the question of how a signal can be rep-
resented as a linear combination of these basic signals. For periodic signals,
the representation is referred to as the Fourier series and is the principal top-
ic of this lecture. Specifically, we develop the Fourier series representation
for periodic continuous-time signals. In Lecture 8 we extend that representa-
tion to the representation of continuous-time aperiodic signals. In Lectures 10
and 11, we develop parallel results for the discrete-time case.



Signals and Systems
7-2

The continuous-time Fourier series expresses a periodic signal as a lin-
ear combination of harmonically related complex exponentials. Alternatively,
it can be expressed in the form of a linear combination of sines and cosines or
sinusoids of different phase angles. In these lectures, however, we will use al-
most exclusively the complex exponential form. The equation describing the
representation of a time function as a linear combination of complex expo-
nentials is commonly referred to as the Fourier synthesis equation, and the
equation specifying how the coefficients are determined in terms of the time
function is referred to as the Fourier series analysis equation. To illustrate
the Fourier series, we focus in this lecture on the Fourier series representa-
tion of a periodic square wave.

The fact that a square wave which is discontinuous can be "built" as a lin-
ear combination of sinusoids at harmonically related frequencies is some-
what astonishing. In fact, as we add terms in the Fourier series representa-
tion, we achieve an increasingly better approximation to the square wave
except at the discontinuities; that is, as the number of terms becomes infinite,
the Fourier series converges to the square wave at every value of T except at
the discontinuities. However, for this example and more generally for period-
ic signals that are square-integrable, the error between the original signal and
the Fourier series representation is negligible, in practical terms, in the sense
that this error in the limit has zero energy. In the lecture, some of these con-
vergence issues are touched on with the objective of developing insight into
the behavior of the Fourier series rather than representing an attempt to fo-
cus formally on the mathematics.

The Fourier series for periodic signals also provides the key to represent-
ing aperiodic signals through a linear combination of complex exponentials.
This representation develops out of the very clever notion of representing an
aperiodic signal as a periodic signal with an increasingly large period. As the
period becomes larger, the Fourier series becomes in the limit the Fourier in-
tegral or Fourier transform, which we begin to develop in the next lecture.

Suggested Reading
Section 4.0, Introduction, pages 161-166

Section 4.1, The Response of Continuous-Time LTI Systems to Complex Ex-
ponentials, pages 166-168

Section 4.2, Representation of Periodic Signals: The Continuous-Time Fourier
Series, pages 168-179

Section 4.3, Approximation of Periodic Signals Using Fourier Series and the
Convergence of Fourier Series, pages 179-185
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If: x(t) = a, 0, (t) + a2 0 2 (t) +

ek(t) k(t)

and system is linear

Then: y(t) = a, 0 1 (t) + a2 0 2 (t) +

Identical for discrete-time

x= a, 1 +a2 02 +.
Then: y = a, 01 + a2+'...

Choose $k (t) or $k [n] so that:

- a broad class of signals can be

constructed as a linear combination

Of $k's

- response to #k's easy to compute

TRANSPARENCY
7.1
The principle of
superposition for
linear systems.

TRANSPARENCY
7.2
Criteria for choosing a
set of basic signals in
terms of which to
decompose the input
to a linear system.

If:
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TRANSPARENCY
7.3
Choice for the basic
signals that led to the
convolution integral
and convolution sum.

LTI SYSTEMS:

e C-T: $k (t) = 5(t - kA)

4 k(t) = h(t - kA)

=> Convolution Integral

eD-T: #k [n] = 6 [n - k]

k[n] =h[n-k]

=> Convolution Sum

TRANSPARENCY
7.4
Complex exponentials
as a set of basic
signals.

$k (t) = eskt

k [n] = Zk n

sk complex

zk complex

Fourier Analysis:

*C-T: sk ~ jwk

*D-T: IzkI = 1

skcomplex

zk complex

k (t) = eikt

kk [n] = e 9kn

=> Laplace transforms

=> z-transforms
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TRANSPARENCY
7.5
Determination of the
Fourier series
coefficients for an
antisymmetric
periodic square wave.

ANTISYMMETRIC PERIODIC SQUARE WAVE

x(t)

T o To
2

ak 1-(-1)e-jk Tfot dt +

t

(+ 1) e- jkwot dt

j -(-1)ki k/#0

a 1 x(t) e- jkwot dt= f x(t) dt = 0
0 To 0 TOTo
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7.6
The Fourier series
coefficients for an
antisymmetric
periodic square wave.

ANTISYMMETRIC PERIODIC SQUARE WAVE

J7rak
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ao =0; ak = 1 1
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(-1) k}

e odd harmonic

oak imaginary

eak = -a- k (antisymmetric)

k#0

sine series

oo
x(t) = ao + , 2j aksinkwoOt

k=1

I 

I F----"



Continuous-Time Fourier Series

x(t) = E ak ejkot
k= - oo

XN (t) $j
k=-N
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ak e jkc)ot

Symmetric square wave: ak = k

N
XN (t) = + , 2ak cos kwot

k=1

A
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Fourier series
coefficients for a
symmetric periodic
square wave.

SYMMETRIC PERIODIC SQUARE WAVE

Example 4.5:

x(t)
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ak real

oak = a-k(symmetric)

cosine series

00
x(t) = ao + [ 2 akcoskoot

k=1
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Illustration of the
superposition of terms
in the Fourier series
representation for a
symmetric periodic
square wave.
[Example 4.5 from the
text.]
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Partial sum
incorporating
(2N + 1) terms in the
Fourier series.
[The analysis equation
should read ak -

1/Tfx(t)e -jk"ot dt

+00

x(t) = ak ejkwot synthesis
k =-00

a = x(t) eikcoot analysis
kT To

XN (t)

N

k=-N
ak e jkwot

eN (t) =x(t) - XN (t)

Does eN (t) decrease as N increases?

TRANSPARENCY
7.10
Conditions for
convergence of the
Fourier series.

CONVERGENCE OF FOURIER SERIES

*X(t) square integrable:

if f |X(t)12 dt <00
T0

then j IeN (t)|2 dt--O
To

as N - oo

oDirichlet conditions.

if f Ix(t) I dt < 00 and x(t) "well behaved"
To

then eN (t) -*. 0 as N - oo

except at discontinuities
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FOURIER REPRESENTATION OF APERIODIC SIGNALS

x (t)

-TI Ti t

(t)=x(t)

As To --. oo

Tx

_R(t) - X t)

- use Fourier series to represent x(t)

- let To-oo to represent x(t)
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An aperiodic signal to
be represented as a
linear combination of
complex exponentials.

FOURIER REPRESENTATION OF APERIODIC SIGNALS

X (t)

-TI

X(t) = x(t)

T1  TO
2

Iti< 2

As To -- oo i(t) x(t)

- use Fourier series to represent x(t)

- let T0-o-ooto represent x(t)
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Representation of an
aperiodic signal as the
limiting form of a
periodic signal with
the period increasing
to infinity.- TO
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